Localizations for quiver Hecke algebras II

IF 1.5 1区 数学 Q1 MATHEMATICS
M. Kashiwara, Myungho Kim, Se-jin Oh, E. Park
{"title":"Localizations for quiver Hecke algebras II","authors":"M. Kashiwara, Myungho Kim, Se-jin Oh, E. Park","doi":"10.1112/plms.12558","DOIUrl":null,"url":null,"abstract":"We prove that the localization C∼w$ \\widetilde{\\mathcal {C}}_w$ of the monoidal category Cw$ \\mathcal {C}_w$ is rigid, and the category Cw,v$ \\mathcal {C}_{w,v}$ admits a localization via a real commuting family of central objects. For a quiver Hecke algebra R$R$ and an element w$w$ in the Weyl group, the subcategory Cw$ \\mathcal {C}_w$ of the category R-gmod$R\\text{-}\\mathrm{gmod}$ of finite‐dimensional graded R$R$ ‐modules categorifies the quantum unipotent coordinate ring Aq(n(w))$A_q(\\mathfrak {n}(w))$ . In the previous paper, we constructed a monoidal category C∼w$ \\widetilde{\\mathcal {C}}_w$ such that it contains Cw$ \\mathcal {C}_w$ and the objects {M(wΛi,Λi)∣i∈I}$\\lbrace {{\\hspace*{0.6pt}\\mathsf {M}}(w\\Lambda _i,\\Lambda _i)}\\mid {i\\in I}\\rbrace$ corresponding to the frozen variables are invertible. In this paper, we show that there is a monoidal equivalence between the category C∼w$ \\widetilde{\\mathcal {C}}_w$ and (C∼w−1)rev$(\\widetilde{\\mathcal {C}}_{w^{-1}})^{\\hspace*{0.6pt}\\mathrm{rev}}$ . Together with the already known left‐rigidity of C∼w$ \\widetilde{\\mathcal {C}}_w$ , it follows that the monoidal category C∼w$ \\widetilde{\\mathcal {C}}_w$ is rigid. If v≼w$v\\preccurlyeq w$ in the Bruhat order, there is a subcategory Cw,v$ \\mathcal {C}_{w,v}$ of Cw$ \\mathcal {C}_w$ that categorifies the doubly‐invariant algebra N′(w)C[N]N(v)$^{N^{\\prime }(w)} {\\mathbb {C}}[N]^{N(v)}$ . We prove that the family M(wΛi,vΛi)i∈I$\\bigl ({\\hspace*{0.6pt}\\mathsf {M}}(w\\Lambda _i,v\\Lambda _i)\\bigr )_{i\\in I}$ of simple R$R$ ‐module forms a real commuting family of graded central objects in the category Cw,v$ \\mathcal {C}_{w,v}$ so that there is a localization C∼w,v$ \\widetilde{\\mathcal {C}}_{w,v}$ of Cw,v$ \\mathcal {C}_{w,v}$ in which M(wΛi,vΛi)${\\hspace*{0.6pt}\\mathsf {M}}(w\\Lambda _i,v\\Lambda _i)$ are invertible. Since the localization of the algebra N′(w)C[N]N(v)$^{N^{\\prime }(w)} {\\mathbb {C}}[N]^{N(v)}$ by the family of the isomorphism classes of M(wΛi,vΛi)${\\hspace*{0.6pt}\\mathsf {M}}(w\\Lambda _i,v\\Lambda _i)$ is isomorphic to the coordinate ring C[Rw,v]${\\mathbb {C}}[R_{w,v}]$ of the open Richardson variety associated with w$w$ and v$v$ , the localization C∼w,v$ \\widetilde{\\mathcal {C}}_{w,v}$ categorifies the coordinate ring C[Rw,v]${\\mathbb {C}}[R_{w,v}]$ .","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12558","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We prove that the localization C∼w$ \widetilde{\mathcal {C}}_w$ of the monoidal category Cw$ \mathcal {C}_w$ is rigid, and the category Cw,v$ \mathcal {C}_{w,v}$ admits a localization via a real commuting family of central objects. For a quiver Hecke algebra R$R$ and an element w$w$ in the Weyl group, the subcategory Cw$ \mathcal {C}_w$ of the category R-gmod$R\text{-}\mathrm{gmod}$ of finite‐dimensional graded R$R$ ‐modules categorifies the quantum unipotent coordinate ring Aq(n(w))$A_q(\mathfrak {n}(w))$ . In the previous paper, we constructed a monoidal category C∼w$ \widetilde{\mathcal {C}}_w$ such that it contains Cw$ \mathcal {C}_w$ and the objects {M(wΛi,Λi)∣i∈I}$\lbrace {{\hspace*{0.6pt}\mathsf {M}}(w\Lambda _i,\Lambda _i)}\mid {i\in I}\rbrace$ corresponding to the frozen variables are invertible. In this paper, we show that there is a monoidal equivalence between the category C∼w$ \widetilde{\mathcal {C}}_w$ and (C∼w−1)rev$(\widetilde{\mathcal {C}}_{w^{-1}})^{\hspace*{0.6pt}\mathrm{rev}}$ . Together with the already known left‐rigidity of C∼w$ \widetilde{\mathcal {C}}_w$ , it follows that the monoidal category C∼w$ \widetilde{\mathcal {C}}_w$ is rigid. If v≼w$v\preccurlyeq w$ in the Bruhat order, there is a subcategory Cw,v$ \mathcal {C}_{w,v}$ of Cw$ \mathcal {C}_w$ that categorifies the doubly‐invariant algebra N′(w)C[N]N(v)$^{N^{\prime }(w)} {\mathbb {C}}[N]^{N(v)}$ . We prove that the family M(wΛi,vΛi)i∈I$\bigl ({\hspace*{0.6pt}\mathsf {M}}(w\Lambda _i,v\Lambda _i)\bigr )_{i\in I}$ of simple R$R$ ‐module forms a real commuting family of graded central objects in the category Cw,v$ \mathcal {C}_{w,v}$ so that there is a localization C∼w,v$ \widetilde{\mathcal {C}}_{w,v}$ of Cw,v$ \mathcal {C}_{w,v}$ in which M(wΛi,vΛi)${\hspace*{0.6pt}\mathsf {M}}(w\Lambda _i,v\Lambda _i)$ are invertible. Since the localization of the algebra N′(w)C[N]N(v)$^{N^{\prime }(w)} {\mathbb {C}}[N]^{N(v)}$ by the family of the isomorphism classes of M(wΛi,vΛi)${\hspace*{0.6pt}\mathsf {M}}(w\Lambda _i,v\Lambda _i)$ is isomorphic to the coordinate ring C[Rw,v]${\mathbb {C}}[R_{w,v}]$ of the open Richardson variety associated with w$w$ and v$v$ , the localization C∼w,v$ \widetilde{\mathcal {C}}_{w,v}$ categorifies the coordinate ring C[Rw,v]${\mathbb {C}}[R_{w,v}]$ .
箭袋Hecke代数的局部化Ⅱ
我们证明了局域化C ~ w$ \widetilde{\mathcal {C}}_w$ 一元范畴Cw的$ \mathcal {C}_w$ 是刚性的,范畴Cw v$ \mathcal {C}_{w,v}$ 允许通过中心对象的实交换族进行定位。对于一个颤振赫克代数R$R$ 元素w$w$ 在Weyl组中,子类别Cw$ \mathcal {C}_w$ R-gmod类的$R\text{-}\mathrm{gmod}$ 有限维梯度R$R$ ‐模组分类量子单幂次坐标环Aq(n(w))$A_q(\mathfrak {n}(w))$ 。在上一篇论文中,我们构造了一个单项式范畴C ~ w$ \widetilde{\mathcal {C}}_w$ 使得它包含Cw$ \mathcal {C}_w$ 还有物体 {M(wΛi,Λi)∣i∈i}$\lbrace {{\hspace*{0.6pt}\mathsf {M}}(w\Lambda _i,\Lambda _i)}\mid {i\in I}\rbrace$ 对应于冻结的变量是可逆的。在本文中,我们证明了C ~ w类之间存在一元等价$ \widetilde{\mathcal {C}}_w$ 和(C ~ w−1)rev$(\widetilde{\mathcal {C}}_{w^{-1}})^{\hspace*{0.6pt}\mathrm{rev}}$ 。加上已知的C ~ w的左刚性$ \widetilde{\mathcal {C}}_w$ ,则一元类C ~ w$ \widetilde{\mathcal {C}}_w$ 是刚性的。如果我现在$v\preccurlyeq w$ 在Bruhat序中,有一个子范畴Cw,v$ \mathcal {C}_{w,v}$ Cw的$ \mathcal {C}_w$ 双不变代数N ' (w)C[N]N(v)$^{N^{\prime }(w)} {\mathbb {C}}[N]^{N(v)}$ 。证明族M(wΛi,vΛi)i∈i$\bigl ({\hspace*{0.6pt}\mathsf {M}}(w\Lambda _i,v\Lambda _i)\bigr )_{i\in I}$ 单R的$R$ ‐模在Cw,v范畴中形成了一个实交换的分级中心对象族$ \mathcal {C}_{w,v}$ 所以有一个局域化C ~ w,v$ \widetilde{\mathcal {C}}_{w,v}$ (Cw,v)$ \mathcal {C}_{w,v}$ 其中M(wΛi,vΛi)${\hspace*{0.6pt}\mathsf {M}}(w\Lambda _i,v\Lambda _i)$ 是可逆的。由于代数N ' (w)C[N]N(v)的局域化$^{N^{\prime }(w)} {\mathbb {C}}[N]^{N(v)}$ 由M的同构类族(wΛi,vΛi)${\hspace*{0.6pt}\mathsf {M}}(w\Lambda _i,v\Lambda _i)$ 与坐标环C[Rw,v]同构${\mathbb {C}}[R_{w,v}]$ 与w有关的开放理查德森品种$w$ v$v$ ,局域化C ~ w,v$ \widetilde{\mathcal {C}}_{w,v}$ 对坐标环C[Rw,v]进行分类${\mathbb {C}}[R_{w,v}]$ .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信