Numerical modelling of dense snow avalanches with a well-balanced scheme based on the 2D shallow water equations

IF 2.8 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
M. Sanz-Ramos, E. Bladé, P. Oller, G. Furdada
{"title":"Numerical modelling of dense snow avalanches with a well-balanced scheme based on the 2D shallow water equations","authors":"M. Sanz-Ramos, E. Bladé, P. Oller, G. Furdada","doi":"10.1017/jog.2023.48","DOIUrl":null,"url":null,"abstract":"\n A common technique for simulating non–Newtonian fluid dynamics, such as snow avalanches, is to solve the Shallow Water Equations (SWE), together with a rheological model describing the momentum dissipation by shear stresses. Friction and cohesion terms are commonly modelled using the Voellmy friction model and, recently, the Bartelt cohesion model. Here, an adaptation of the Roe scheme that ensures the balance between the flux and pressure gradients and the friction source term is presented. An upwind scheme was used for the discretisation of the SWE numerical fluxes and the non–velocity-dependent terms of the friction–cohesion model, whereas a centred scheme was used for the velocity-dependent source terms. The model was tested in analytically solvable settings, laboratory experiments and real cases. In all cases, the model performed well, avoiding numerical instabilities and achieving stable and consistent solution even for an avalanche stopping on a sloping terrain.","PeriodicalId":15981,"journal":{"name":"Journal of Glaciology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Glaciology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1017/jog.2023.48","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 2

Abstract

A common technique for simulating non–Newtonian fluid dynamics, such as snow avalanches, is to solve the Shallow Water Equations (SWE), together with a rheological model describing the momentum dissipation by shear stresses. Friction and cohesion terms are commonly modelled using the Voellmy friction model and, recently, the Bartelt cohesion model. Here, an adaptation of the Roe scheme that ensures the balance between the flux and pressure gradients and the friction source term is presented. An upwind scheme was used for the discretisation of the SWE numerical fluxes and the non–velocity-dependent terms of the friction–cohesion model, whereas a centred scheme was used for the velocity-dependent source terms. The model was tested in analytically solvable settings, laboratory experiments and real cases. In all cases, the model performed well, avoiding numerical instabilities and achieving stable and consistent solution even for an avalanche stopping on a sloping terrain.
基于二维浅水方程的良好平衡方案的密集雪崩数值模拟
模拟非牛顿流体动力学(如雪崩)的常用技术是求解浅水方程(SWE),以及描述剪切应力的动量耗散的流变模型。摩擦和内聚项通常使用Voellmy摩擦模型和最近的Bartelt内聚模型来建模。本文对Roe格式进行了改进,以保证流量和压力梯度与摩擦源项之间的平衡。采用逆风格式对SWE数值通量和摩擦-内聚模型的非速度相关项进行离散化,而对速度相关源项采用中心格式。该模型在解析可解环境、实验室实验和实际案例中进行了测试。在所有情况下,该模型都表现良好,避免了数值不稳定性,即使在斜坡地形上停止雪崩也能获得稳定一致的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Glaciology
Journal of Glaciology 地学-地球科学综合
CiteScore
5.80
自引率
14.70%
发文量
101
审稿时长
6 months
期刊介绍: Journal of Glaciology publishes original scientific articles and letters in any aspect of glaciology- the study of ice. Studies of natural, artificial, and extraterrestrial ice and snow, as well as interactions between ice, snow and the atmospheric, oceanic and subglacial environment are all eligible. They may be based on field work, remote sensing, laboratory investigations, theoretical analysis or numerical modelling, or may report on newly developed glaciological instruments. Subjects covered recently in the Journal have included palaeoclimatology and the chemistry of the atmosphere as revealed in ice cores; theoretical and applied physics and chemistry of ice; the dynamics of glaciers and ice sheets, and changes in their extent and mass under climatic forcing; glacier energy balances at all scales; glacial landforms, and glaciers as geomorphic agents; snow science in all its aspects; ice as a host for surface and subglacial ecosystems; sea ice, icebergs and lake ice; and avalanche dynamics and other glacial hazards to human activity. Studies of permafrost and of ice in the Earth’s atmosphere are also within the domain of the Journal, as are interdisciplinary applications to engineering, biological, and social sciences, and studies in the history of glaciology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信