Partial observability of finite dimensional linear systems

Q4 Engineering
Mohamed Elkhail Danine, A. Bernoussi, Abdelaziz Bel Fekih
{"title":"Partial observability of finite dimensional linear systems","authors":"Mohamed Elkhail Danine, A. Bernoussi, Abdelaziz Bel Fekih","doi":"10.2478/candc-2021-0014","DOIUrl":null,"url":null,"abstract":"Abstract In this work, we consider the partial observability problem for finite dimensional dynamical linear systems that are not necessarily observable. For that purpose we introduce the so called “observable subspaces” and “partial observability” to find a way to reconstruct the observable part of the system state. Some characterizations of “observable subspaces” have been provided. The reconstruction of the orthogonal projection of the state on the observable subspace is obtained. We give some examples to illustrate our theoretical approach.","PeriodicalId":55209,"journal":{"name":"Control and Cybernetics","volume":"50 1","pages":"269 - 300"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/candc-2021-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this work, we consider the partial observability problem for finite dimensional dynamical linear systems that are not necessarily observable. For that purpose we introduce the so called “observable subspaces” and “partial observability” to find a way to reconstruct the observable part of the system state. Some characterizations of “observable subspaces” have been provided. The reconstruction of the orthogonal projection of the state on the observable subspace is obtained. We give some examples to illustrate our theoretical approach.
有限维线性系统的部分可观测性
摘要在这项工作中,我们考虑了不一定可观测的有限维动态线性系统的部分可观测性问题。为此,我们引入了所谓的“可观测子空间”和“部分可观测性”,以找到一种重建系统状态可观测部分的方法。给出了“可观测子空间”的一些性质。得到了状态在可观测子空间上的正交投影的重构。我们举了一些例子来说明我们的理论方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Control and Cybernetics
Control and Cybernetics 工程技术-计算机:控制论
CiteScore
0.50
自引率
0.00%
发文量
0
期刊介绍: The field of interest covers general concepts, theories, methods and techniques associated with analysis, modelling, control and management in various systems (e.g. technological, economic, ecological, social). The journal is particularly interested in results in the following areas of research: Systems and control theory: general systems theory, optimal cotrol, optimization theory, data analysis, learning, artificial intelligence, modelling & identification, game theory, multicriteria optimisation, decision and negotiation methods, soft approaches: stochastic and fuzzy methods, computer science,
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信