NORMAL HILBERT COEFFICIENTS AND ELLIPTIC IDEALS IN NORMAL TWO-DIMENSIONAL SINGULARITIES

IF 0.8 2区 数学 Q2 MATHEMATICS
Tomohiro Okuma, M. Rossi, Kei-ichi Watanabe, KEN-ICHI Yoshida
{"title":"NORMAL HILBERT COEFFICIENTS AND ELLIPTIC IDEALS IN NORMAL TWO-DIMENSIONAL SINGULARITIES","authors":"Tomohiro Okuma, M. Rossi, Kei-ichi Watanabe, KEN-ICHI Yoshida","doi":"10.1017/nmj.2022.5","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$(A,\\mathfrak m)$\n be an excellent two-dimensional normal local domain. In this paper, we study the elliptic and the strongly elliptic ideals of A with the aim to characterize elliptic and strongly elliptic singularities, according to the definitions given by Wagreich and Yau. In analogy with the rational singularities, in the main result, we characterize a strongly elliptic singularity in terms of the normal Hilbert coefficients of the integrally closed \n$\\mathfrak m$\n -primary ideals of A. Unlike \n$p_g$\n -ideals, elliptic ideals and strongly elliptic ideals are not necessarily normal and necessary, and sufficient conditions for being normal are given. In the last section, we discuss the existence (and the effective construction) of strongly elliptic ideals in any two-dimensional normal local ring.","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"248 1","pages":"779 - 800"},"PeriodicalIF":0.8000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Let $(A,\mathfrak m)$ be an excellent two-dimensional normal local domain. In this paper, we study the elliptic and the strongly elliptic ideals of A with the aim to characterize elliptic and strongly elliptic singularities, according to the definitions given by Wagreich and Yau. In analogy with the rational singularities, in the main result, we characterize a strongly elliptic singularity in terms of the normal Hilbert coefficients of the integrally closed $\mathfrak m$ -primary ideals of A. Unlike $p_g$ -ideals, elliptic ideals and strongly elliptic ideals are not necessarily normal and necessary, and sufficient conditions for being normal are given. In the last section, we discuss the existence (and the effective construction) of strongly elliptic ideals in any two-dimensional normal local ring.
正规二维奇点中的正规HILBERT系数与椭圆理想
摘要设$(A,\mathfrak m)$是一个优秀的二维法域。本文根据Wagreich和Yau给出的定义,研究了A的椭圆型和强椭圆型理想,目的是刻画椭圆型和强椭圆型奇异。与有理奇点类比,在主要结果中,我们用a的整闭$ $ mathfrak m$ -初等理想的正态希尔伯特系数来刻画强椭圆奇点。与$p_g$ -理想不同,椭圆理想和强椭圆理想不是必然的正态和必要的,并给出了正态的充分条件。在最后一节中,我们讨论了强椭圆理想在任意二维正规局部环上的存在性及其有效构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
31
审稿时长
6 months
期刊介绍: The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信