{"title":"Detection of car parking space by using Hybrid Deep DenseNet Optimization algorithm","authors":"Vankadhara Rajyalakshmi, Kuruva Lakshmanna","doi":"10.1002/nem.2228","DOIUrl":null,"url":null,"abstract":"<p>Internet of Things (IoT) and related applications have revolutionized most of our societal activities, enhancing the quality of human life. This study presents an IoT-based model that enables optimized parking space utilization. The paper implements a Hybrid Deep DenseNet Optimization (HDDNO) algorithm for predicting parking spot availability involving Machine Learning (ML) and deep learning techniques. The HDDNO-based ML model uses secondary data from the National Research Council Park (CNRPark) in Pisa, Italy. Different regression algorithms are employed to forecast parking lot availability for a given time as part of the prediction process. The DenseNet technique has generated promising results, whereas the HDDNO model yielded better accuracy. The use of five optimizers, namely, Adaptive Moment Estimation (Adam), Root Mean Squared Propagation (RMSprop), Adaptive Gradient (AdaGrad), AdaDelta, and Stochastic Gradient Descent (SGD), have played significant roles in minimizing the loss of the model. The part of Adam has enabled the HDDNO model to generate predictions with high accuracy 99.19% and low loss 0.0306%. This proposed methodology would significantly improve environmental safety and act as an initiative toward developing smart cities.</p>","PeriodicalId":14154,"journal":{"name":"International Journal of Network Management","volume":"34 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Network Management","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/nem.2228","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Internet of Things (IoT) and related applications have revolutionized most of our societal activities, enhancing the quality of human life. This study presents an IoT-based model that enables optimized parking space utilization. The paper implements a Hybrid Deep DenseNet Optimization (HDDNO) algorithm for predicting parking spot availability involving Machine Learning (ML) and deep learning techniques. The HDDNO-based ML model uses secondary data from the National Research Council Park (CNRPark) in Pisa, Italy. Different regression algorithms are employed to forecast parking lot availability for a given time as part of the prediction process. The DenseNet technique has generated promising results, whereas the HDDNO model yielded better accuracy. The use of five optimizers, namely, Adaptive Moment Estimation (Adam), Root Mean Squared Propagation (RMSprop), Adaptive Gradient (AdaGrad), AdaDelta, and Stochastic Gradient Descent (SGD), have played significant roles in minimizing the loss of the model. The part of Adam has enabled the HDDNO model to generate predictions with high accuracy 99.19% and low loss 0.0306%. This proposed methodology would significantly improve environmental safety and act as an initiative toward developing smart cities.
期刊介绍:
Modern computer networks and communication systems are increasing in size, scope, and heterogeneity. The promise of a single end-to-end technology has not been realized and likely never will occur. The decreasing cost of bandwidth is increasing the possible applications of computer networks and communication systems to entirely new domains. Problems in integrating heterogeneous wired and wireless technologies, ensuring security and quality of service, and reliably operating large-scale systems including the inclusion of cloud computing have all emerged as important topics. The one constant is the need for network management. Challenges in network management have never been greater than they are today. The International Journal of Network Management is the forum for researchers, developers, and practitioners in network management to present their work to an international audience. The journal is dedicated to the dissemination of information, which will enable improved management, operation, and maintenance of computer networks and communication systems. The journal is peer reviewed and publishes original papers (both theoretical and experimental) by leading researchers, practitioners, and consultants from universities, research laboratories, and companies around the world. Issues with thematic or guest-edited special topics typically occur several times per year. Topic areas for the journal are largely defined by the taxonomy for network and service management developed by IFIP WG6.6, together with IEEE-CNOM, the IRTF-NMRG and the Emanics Network of Excellence.