Coincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces

IF 0.4 Q4 MATHEMATICS
A. Abkar, M. Norouzian
{"title":"Coincidence Quasi-Best Proximity Points for Quasi-Cyclic-Noncyclic Mappings in Convex Metric Spaces","authors":"A. Abkar, M. Norouzian","doi":"10.52547/ijmsi.17.1.27","DOIUrl":null,"url":null,"abstract":". We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al [14]. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings as a subclass. The existence and convergence of coincidence-best and coincidence quasi-best proximity points in the setting of convex metric spaces are investigated.","PeriodicalId":43670,"journal":{"name":"Iranian Journal of Mathematical Sciences and Informatics","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Mathematical Sciences and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/ijmsi.17.1.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

. We introduce the notion of quasi-cyclic-noncyclic pair and its relevant new notion of coincidence quasi-best proximity points in a convex metric space. In this way we generalize the notion of coincidence-best proximity point already introduced by M. Gabeleh et al [14]. It turns out that under some circumstances this new class of mappings contains the class of cyclic-noncyclic mappings as a subclass. The existence and convergence of coincidence-best and coincidence quasi-best proximity points in the setting of convex metric spaces are investigated.
凸度量空间中拟循环-非循环映射的重合拟最佳接近点
. 引入了凸度量空间中拟循环-非循环对的概念及其相关的重合拟最佳接近点的新概念。通过这种方式,我们推广了M. Gabeleh等人已经提出的重合-最佳接近点的概念。在某些情况下,这个新的映射类包含了循环-非循环映射类的子类。研究了凸度量空间中重合最佳接近点和重合拟最佳接近点的存在性和收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信