Generalized Stochastic Restricted LARS Algorithm

Kayanan Manickavasagar, P. Wijekoon
{"title":"Generalized Stochastic Restricted LARS Algorithm","authors":"Kayanan Manickavasagar, P. Wijekoon","doi":"10.4038/rjs.v13i1.112","DOIUrl":null,"url":null,"abstract":"The Least Absolute Shrinkage and Selection Operator (LASSO) is used to tackle both the multicollinearity issue and the variable selection concurrently in the linear regression model. The Least Angle Regression (LARS) algorithm has been used widely to produce LASSO solutions. However, this algorithm is unreliable when high multicollinearity exists among regressor variables. One solution to improve the estimation of regression parameters when multicollinearity exists is adding preliminary information about the regression coefficient to the model as either exact linear restrictions or stochastic linear restrictions. Based on this solution, this article proposed a generalized version of the stochastic restricted LARS algorithm, which combines LASSO with existing stochastic restricted estimators. Further, we examined the performance of the proposed algorithm by employing a Monte Carlo simulation study and a numerical example.","PeriodicalId":56207,"journal":{"name":"Ruhuna Journal of Science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ruhuna Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4038/rjs.v13i1.112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Least Absolute Shrinkage and Selection Operator (LASSO) is used to tackle both the multicollinearity issue and the variable selection concurrently in the linear regression model. The Least Angle Regression (LARS) algorithm has been used widely to produce LASSO solutions. However, this algorithm is unreliable when high multicollinearity exists among regressor variables. One solution to improve the estimation of regression parameters when multicollinearity exists is adding preliminary information about the regression coefficient to the model as either exact linear restrictions or stochastic linear restrictions. Based on this solution, this article proposed a generalized version of the stochastic restricted LARS algorithm, which combines LASSO with existing stochastic restricted estimators. Further, we examined the performance of the proposed algorithm by employing a Monte Carlo simulation study and a numerical example.
广义随机约束LARS算法
最小绝对收缩和选择算子(LASSO)用于同时处理线性回归模型中的多重共线性问题和变量选择问题。最小角度回归(LARS)算法已被广泛用于生成LASSO解。然而,当回归变量之间存在高多重共线性时,该算法是不可靠的。当存在多重共线性时,改进回归参数估计的一种解决方案是将关于回归系数的初步信息作为精确线性限制或随机线性限制添加到模型中。基于这种解决方案,本文提出了一种广义的随机限制LARS算法,该算法将LASSO与现有的随机限制估计量相结合。此外,我们通过蒙特卡洛模拟研究和一个数值例子检验了所提出算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信