Facile Preparation of Silk Fibroin Scaffold Via Direct Solvent Exchange

Q3 Computer Science
Qiu-Sheng Wang sci
{"title":"Facile Preparation of Silk Fibroin Scaffold Via Direct Solvent Exchange","authors":"Qiu-Sheng Wang sci","doi":"10.3993/jfbim00328","DOIUrl":null,"url":null,"abstract":"Although silk fibroin (SF) materials have gained extensive attention in tissue engineering due to their good machinability, biocompatibility, biodegradability, the complex processes, unmatched pore structures, and chemical crosslinker still hinder their mass production and clinic use. In this study, we reported a direct green and high-efficiency process to fabricate 3D silk fibroin scaffold by solvent exchange in water. The pore parameters were easily regulated with NaCl as auxiliary porogen. More importantly, without using any crosslinker or organic chemical-induced crystallin, SF scaffolds is mainly constructed with stable silk II crystalline (constituent with β-sheets), which was confirmed by Flourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Additionally, the scaffold in our research keeps good tunability on mechanical properties, which has been demonstrated by the results of mechanical testing and provides a feasible way to optimize physical cues for further applications. Thus, the 3D porous silk scaffold with high efficiency and promising structures broaden the potential as a substitute for biomaterials.","PeriodicalId":38559,"journal":{"name":"Journal of Fiber Bioengineering and Informatics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fiber Bioengineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3993/jfbim00328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

Abstract

Although silk fibroin (SF) materials have gained extensive attention in tissue engineering due to their good machinability, biocompatibility, biodegradability, the complex processes, unmatched pore structures, and chemical crosslinker still hinder their mass production and clinic use. In this study, we reported a direct green and high-efficiency process to fabricate 3D silk fibroin scaffold by solvent exchange in water. The pore parameters were easily regulated with NaCl as auxiliary porogen. More importantly, without using any crosslinker or organic chemical-induced crystallin, SF scaffolds is mainly constructed with stable silk II crystalline (constituent with β-sheets), which was confirmed by Flourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Additionally, the scaffold in our research keeps good tunability on mechanical properties, which has been demonstrated by the results of mechanical testing and provides a feasible way to optimize physical cues for further applications. Thus, the 3D porous silk scaffold with high efficiency and promising structures broaden the potential as a substitute for biomaterials.
直接溶剂交换法制备丝素蛋白支架
丝素蛋白材料因其良好的可加工性、生物相容性和生物降解性在组织工程领域受到广泛关注,但其复杂的工艺、不匹配的孔隙结构和化学交联剂等问题仍阻碍其大规模生产和临床应用。在本研究中,我们报道了一种直接绿色高效的水中溶剂交换法制备三维丝素蛋白支架的工艺。NaCl作为辅助孔隙剂,孔隙参数易于调控。更重要的是,SF支架没有使用任何交联剂或有机化学诱导结晶蛋白,主要由稳定的丝II晶体(含有β-片的成分)构成,这一点通过傅里叶红外光谱(FTIR)和x射线衍射(XRD)得到证实。此外,我们研究的支架在力学性能上保持了良好的可调性,这已经被力学测试结果所证明,为进一步的应用提供了优化物理线索的可行方法。因此,三维多孔丝支架具有高效率和有前途的结构,扩大了作为生物材料替代品的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fiber Bioengineering and Informatics
Journal of Fiber Bioengineering and Informatics Materials Science-Materials Science (all)
CiteScore
2.40
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信