Hermitian Calabi Functional in Complexified Orbits

IF 0.6 4区 数学 Q3 MATHEMATICS
Jie He, Kai Zheng
{"title":"Hermitian Calabi Functional in Complexified Orbits","authors":"Jie He, Kai Zheng","doi":"10.1142/S0129167X23500477","DOIUrl":null,"url":null,"abstract":"Let $(M,\\omega)$ be a compact symplectic manifold. We denote by $\\ac$ the space of all almost complex structure compatible with $\\omega$. $\\ac$ has a natural foliation structure with the complexified orbit as leaf. We obtain an explicit formula of the Hessian of Hermitian Calabi functional at an extremal almost K\\\"ahler metric in $\\ac$. We prove that the Hessian of Hermitian Calabi functional is semi-positive definite at critical point when restricted to a complexified orbit, as corollaries we obtain some results analogy to K\\\"ahler case. We also show weak parabolicity of the Hermitian Calabi flow.","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S0129167X23500477","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $(M,\omega)$ be a compact symplectic manifold. We denote by $\ac$ the space of all almost complex structure compatible with $\omega$. $\ac$ has a natural foliation structure with the complexified orbit as leaf. We obtain an explicit formula of the Hessian of Hermitian Calabi functional at an extremal almost K\"ahler metric in $\ac$. We prove that the Hessian of Hermitian Calabi functional is semi-positive definite at critical point when restricted to a complexified orbit, as corollaries we obtain some results analogy to K\"ahler case. We also show weak parabolicity of the Hermitian Calabi flow.
复杂轨道中的Hermitian Calabi泛函
设$(M,\omega)$是一个紧致辛流形。我们用$\ac$表示与$\omega$兼容的所有几乎复杂结构的空间$\ac$具有天然的叶理结构,其轨道像叶子一样复杂。我们得到了在$\ac$中几乎K\“ahler度量的极值上Hermitian-Carabi泛函的Hessian的一个显式。我们证明了当Hermitian-Carabi泛函被限制在复轨道上时,在临界点上是半正定的。作为推论,我们得到了类似于K\”ahler情形的一些结果。我们还展示了埃尔米特-卡拉比流的弱抛物面性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信