RINGS OF TETER TYPE

Pub Date : 2021-12-08 DOI:10.1017/nmj.2022.18
Oleksandra Gasanova, J. Herzog, T. Hibi, S. Moradi
{"title":"RINGS OF TETER TYPE","authors":"Oleksandra Gasanova, J. Herzog, T. Hibi, S. Moradi","doi":"10.1017/nmj.2022.18","DOIUrl":null,"url":null,"abstract":"Abstract Let R be a Cohen–Macaulay local K-algebra or a standard graded K-algebra over a field K with a canonical module \n$\\omega _R$\n . The trace of \n$\\omega _R$\n is the ideal \n$\\operatorname {tr}(\\omega _R)$\n of R which is the sum of those ideals \n$\\varphi (\\omega _R)$\n with \n${\\varphi \\in \\operatorname {Hom}_R(\\omega _R,R)}$\n . The smallest number s for which there exist \n$\\varphi _1, \\ldots , \\varphi _s \\in \\operatorname {Hom}_R(\\omega _R,R)$\n with \n$\\operatorname {tr}(\\omega _R)=\\varphi _1(\\omega _R) + \\cdots + \\varphi _s(\\omega _R)$\n is called the Teter number of R. We say that R is of Teter type if \n$s = 1$\n . It is shown that R is not of Teter type if R is generically Gorenstein. In the present paper, we focus especially on zero-dimensional graded and monomial K-algebras and present various classes of such algebras which are of Teter type.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2022.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Let R be a Cohen–Macaulay local K-algebra or a standard graded K-algebra over a field K with a canonical module $\omega _R$ . The trace of $\omega _R$ is the ideal $\operatorname {tr}(\omega _R)$ of R which is the sum of those ideals $\varphi (\omega _R)$ with ${\varphi \in \operatorname {Hom}_R(\omega _R,R)}$ . The smallest number s for which there exist $\varphi _1, \ldots , \varphi _s \in \operatorname {Hom}_R(\omega _R,R)$ with $\operatorname {tr}(\omega _R)=\varphi _1(\omega _R) + \cdots + \varphi _s(\omega _R)$ is called the Teter number of R. We say that R is of Teter type if $s = 1$ . It is shown that R is not of Teter type if R is generically Gorenstein. In the present paper, we focus especially on zero-dimensional graded and monomial K-algebras and present various classes of such algebras which are of Teter type.
分享
查看原文
TETER型环
摘要设R是一个Cohen–Macaulay局部K-代数或具有正则模$\omega_R$的域K上的标准分次K-代数。$\omega_R$的迹是R的理想$\operatorname{tr}(\omega-R)$,它是那些理想$\varphi(\omega_R)$与${\varphi\in\operatorname的和{Hom}_R(ω_R,R)}$。存在$\varphi_1、\ldots、\varphi_s\in\operatorname的最小数字s{Hom}_R(\omega_R,R)$与$\operatorname{tr}(\omega _R)=\varphi_1(\omega _R)+\cdots+\varphi_s(\ω_R)$称为R的Teter数。结果表明,如果R一般是Gorenstein,则R不是Teter型。本文着重研究了零维分次和单次K-代数,并给出了这类代数的各种Teter型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信