ST-metric Estimation of Factor Exposures

N. El-Hassan, A. Hall, I. Tulunay
{"title":"ST-metric Estimation of Factor Exposures","authors":"N. El-Hassan, A. Hall, I. Tulunay","doi":"10.17265/2159-5291/2020.02.005","DOIUrl":null,"url":null,"abstract":"Non-parametric methods are treasured in data analysis, particularly in finance. ST -metric is a new concept, introduced by Tulunay (2017). It offers non-parametric methods and a new geometric view to data analysis. In that paper, ST-metric concept has been applied to performance measures of portfolios. In this current paper, we purpose another ST-metric method for finding factor exposures in the fiv e-style-factors model. Here the style factors are value, size, minimum volatility, quality and momentum. The main idea is to find the factor exposures (weights) of the five-factors-model by minimizing the ST-metric between benchmark returns and the constructed factor model returns. We compare ST-metric method with Tracking Error method (TE-method) which is used for factor analysis of major indexes, decomposed into the style factors (tradable via Exchange Traded Funds (ETFs)) by Ang et al. (2018). We show that ST-metric method gives better estimation of the factor exposures (weights) than tracking error method, in general, and further how ST-metric values vary with respect to fluctuations. This explains the reason behind the e fficiency of the ST-metric method. We support this idea with empirical evidences.","PeriodicalId":61124,"journal":{"name":"数学和系统科学:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学和系统科学:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.17265/2159-5291/2020.02.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Non-parametric methods are treasured in data analysis, particularly in finance. ST -metric is a new concept, introduced by Tulunay (2017). It offers non-parametric methods and a new geometric view to data analysis. In that paper, ST-metric concept has been applied to performance measures of portfolios. In this current paper, we purpose another ST-metric method for finding factor exposures in the fiv e-style-factors model. Here the style factors are value, size, minimum volatility, quality and momentum. The main idea is to find the factor exposures (weights) of the five-factors-model by minimizing the ST-metric between benchmark returns and the constructed factor model returns. We compare ST-metric method with Tracking Error method (TE-method) which is used for factor analysis of major indexes, decomposed into the style factors (tradable via Exchange Traded Funds (ETFs)) by Ang et al. (2018). We show that ST-metric method gives better estimation of the factor exposures (weights) than tracking error method, in general, and further how ST-metric values vary with respect to fluctuations. This explains the reason behind the e fficiency of the ST-metric method. We support this idea with empirical evidences.
因子暴露的st度量估计
非参数方法在数据分析中非常重要,尤其是在金融领域。ST -metric是一个新概念,由Tulunay(2017)提出。它为数据分析提供了非参数化的方法和新的几何视角。在这篇论文中,ST-metric概念已经被应用到投资组合的绩效度量中。在本文中,我们使用另一种ST-metric方法来寻找五种风格因素模型中的因素暴露。这里的风格因素是价值、规模、最小波动、质量和动量。主要思想是通过最小化基准收益与构建的因子模型收益之间的st度量来找到五因子模型的因子暴露(权重)。我们将ST-metric方法与跟踪误差方法(TE-method)进行比较,后者用于主要指数的因子分析,由Ang等人(2018)分解为风格因素(可通过交易所交易基金(etf)交易)。我们表明,通常情况下,st度量方法比跟踪误差方法更好地估计了因素暴露(权重),并进一步说明了st度量值如何随波动而变化。这就解释了ST-metric方法效率高的原因。我们用经验证据支持这一观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
450
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信