{"title":"ST-metric Estimation of Factor Exposures","authors":"N. El-Hassan, A. Hall, I. Tulunay","doi":"10.17265/2159-5291/2020.02.005","DOIUrl":null,"url":null,"abstract":"Non-parametric methods are treasured in data analysis, particularly in finance. ST -metric is a new concept, introduced by Tulunay (2017). It offers non-parametric methods and a new geometric view to data analysis. In that paper, ST-metric concept has been applied to performance measures of portfolios. In this current paper, we purpose another ST-metric method for finding factor exposures in the fiv e-style-factors model. Here the style factors are value, size, minimum volatility, quality and momentum. The main idea is to find the factor exposures (weights) of the five-factors-model by minimizing the ST-metric between benchmark returns and the constructed factor model returns. We compare ST-metric method with Tracking Error method (TE-method) which is used for factor analysis of major indexes, decomposed into the style factors (tradable via Exchange Traded Funds (ETFs)) by Ang et al. (2018). We show that ST-metric method gives better estimation of the factor exposures (weights) than tracking error method, in general, and further how ST-metric values vary with respect to fluctuations. This explains the reason behind the e fficiency of the ST-metric method. We support this idea with empirical evidences.","PeriodicalId":61124,"journal":{"name":"数学和系统科学:英文版","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学和系统科学:英文版","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.17265/2159-5291/2020.02.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Non-parametric methods are treasured in data analysis, particularly in finance. ST -metric is a new concept, introduced by Tulunay (2017). It offers non-parametric methods and a new geometric view to data analysis. In that paper, ST-metric concept has been applied to performance measures of portfolios. In this current paper, we purpose another ST-metric method for finding factor exposures in the fiv e-style-factors model. Here the style factors are value, size, minimum volatility, quality and momentum. The main idea is to find the factor exposures (weights) of the five-factors-model by minimizing the ST-metric between benchmark returns and the constructed factor model returns. We compare ST-metric method with Tracking Error method (TE-method) which is used for factor analysis of major indexes, decomposed into the style factors (tradable via Exchange Traded Funds (ETFs)) by Ang et al. (2018). We show that ST-metric method gives better estimation of the factor exposures (weights) than tracking error method, in general, and further how ST-metric values vary with respect to fluctuations. This explains the reason behind the e fficiency of the ST-metric method. We support this idea with empirical evidences.