Berezin–Toeplitz quantization in real polarizations with toric singularities

IF 1.2 3区 数学 Q1 MATHEMATICS
N. Leung, Y. Yau
{"title":"Berezin–Toeplitz quantization in real polarizations with toric singularities","authors":"N. Leung, Y. Yau","doi":"10.4310/cntp.2022.v16.n4.a6","DOIUrl":null,"url":null,"abstract":"On a compact K\\\"ahler manifold $X$, Toeplitz operators determine a deformation quantization $(\\operatorname{C}^\\infty(X, \\mathbb{C})[[\\hbar]], \\star)$ with separation of variables [10] with respect to transversal complex polarizations $T^{1, 0}X, T^{0, 1}X$ as $\\hbar \\to 0^+$ [15]. The analogous statement is proved for compact symplectic manifolds with transversal non-singular real polarizations [13]. In this paper, we establish the analogous result for transversal singular real polarizations on compact toric symplectic manifolds $X$. Due to toric singularities, half-form correction and localization of our Toeplitz operators are essential. Via norm estimations, we show that these Toeplitz operators determine a star product on $X$ as $\\hbar \\to 0^+$.","PeriodicalId":55616,"journal":{"name":"Communications in Number Theory and Physics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Number Theory and Physics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/cntp.2022.v16.n4.a6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

On a compact K\"ahler manifold $X$, Toeplitz operators determine a deformation quantization $(\operatorname{C}^\infty(X, \mathbb{C})[[\hbar]], \star)$ with separation of variables [10] with respect to transversal complex polarizations $T^{1, 0}X, T^{0, 1}X$ as $\hbar \to 0^+$ [15]. The analogous statement is proved for compact symplectic manifolds with transversal non-singular real polarizations [13]. In this paper, we establish the analogous result for transversal singular real polarizations on compact toric symplectic manifolds $X$. Due to toric singularities, half-form correction and localization of our Toeplitz operators are essential. Via norm estimations, we show that these Toeplitz operators determine a star product on $X$ as $\hbar \to 0^+$.
复曲面奇异实极化中的Berezin–Toeplitz量子化
在紧致Kähler流形$X$上,Toeplitz算子确定了一个变形量化$(\operatorname{C}^\infty(X, \mathbb{C})[[\hbar]], \star)$,其中变量[10]相对于横向复极化$T^{1, 0}X, T^{0, 1}X$的分离为$\hbar \to 0^+$[15]。对于具有横向非奇异实极化[13]的紧辛流形证明了类似的命题。本文建立了紧环辛流形$X$上的横向奇异实极化的类似结果。由于环奇点的存在,我们的Toeplitz算子的半形式校正和局部化是必不可少的。通过范数估计,我们证明这些Toeplitz算子确定$X$上的明星产品为$\hbar \to 0^+$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Number Theory and Physics
Communications in Number Theory and Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
5.30%
发文量
8
审稿时长
>12 weeks
期刊介绍: Focused on the applications of number theory in the broadest sense to theoretical physics. Offers a forum for communication among researchers in number theory and theoretical physics by publishing primarily research, review, and expository articles regarding the relationship and dynamics between the two fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信