{"title":"Subsampled Nonmonotone Spectral Gradient Methods","authors":"S. Bellavia, N. K. Jerinkić, Greta Malaspina","doi":"10.2478/caim-2020-0002","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with subsampled spectral gradient methods for minimizing finite sums. Subsample function and gradient approximations are employed in order to reduce the overall computational cost of the classical spectral gradient methods. The global convergence is enforced by a nonmonotone line search procedure. Global convergence is proved provided that functions and gradients are approximated with increasing accuracy. R-linear convergence and worst-case iteration complexity is investigated in case of strongly convex objective function. Numerical results on well known binary classification problems are given to show the effectiveness of this framework and analyze the effect of different spectral coefficient approximations arising from the variable sample nature of this procedure.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"11 1","pages":"19 - 34"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/caim-2020-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5
Abstract
Abstract This paper deals with subsampled spectral gradient methods for minimizing finite sums. Subsample function and gradient approximations are employed in order to reduce the overall computational cost of the classical spectral gradient methods. The global convergence is enforced by a nonmonotone line search procedure. Global convergence is proved provided that functions and gradients are approximated with increasing accuracy. R-linear convergence and worst-case iteration complexity is investigated in case of strongly convex objective function. Numerical results on well known binary classification problems are given to show the effectiveness of this framework and analyze the effect of different spectral coefficient approximations arising from the variable sample nature of this procedure.
期刊介绍:
Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.