Subsampled Nonmonotone Spectral Gradient Methods

IF 0.3 Q4 MATHEMATICS
S. Bellavia, N. K. Jerinkić, Greta Malaspina
{"title":"Subsampled Nonmonotone Spectral Gradient Methods","authors":"S. Bellavia, N. K. Jerinkić, Greta Malaspina","doi":"10.2478/caim-2020-0002","DOIUrl":null,"url":null,"abstract":"Abstract This paper deals with subsampled spectral gradient methods for minimizing finite sums. Subsample function and gradient approximations are employed in order to reduce the overall computational cost of the classical spectral gradient methods. The global convergence is enforced by a nonmonotone line search procedure. Global convergence is proved provided that functions and gradients are approximated with increasing accuracy. R-linear convergence and worst-case iteration complexity is investigated in case of strongly convex objective function. Numerical results on well known binary classification problems are given to show the effectiveness of this framework and analyze the effect of different spectral coefficient approximations arising from the variable sample nature of this procedure.","PeriodicalId":37903,"journal":{"name":"Communications in Applied and Industrial Mathematics","volume":"11 1","pages":"19 - 34"},"PeriodicalIF":0.3000,"publicationDate":"2018-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Applied and Industrial Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/caim-2020-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

Abstract

Abstract This paper deals with subsampled spectral gradient methods for minimizing finite sums. Subsample function and gradient approximations are employed in order to reduce the overall computational cost of the classical spectral gradient methods. The global convergence is enforced by a nonmonotone line search procedure. Global convergence is proved provided that functions and gradients are approximated with increasing accuracy. R-linear convergence and worst-case iteration complexity is investigated in case of strongly convex objective function. Numerical results on well known binary classification problems are given to show the effectiveness of this framework and analyze the effect of different spectral coefficient approximations arising from the variable sample nature of this procedure.
子采样非单调谱梯度方法
摘要本文讨论了最小化有限和的子采样谱梯度方法。为了降低经典谱梯度方法的总体计算成本,采用了子样本函数和梯度近似。全局收敛是通过非单调线搜索过程来实现的。证明了全局收敛性,前提是函数和梯度的近似精度不断提高。研究了目标函数强凸情况下的R线性收敛性和最坏情况迭代复杂度。给出了已知二元分类问题的数值结果,以表明该框架的有效性,并分析了由于该程序的可变样本性质而产生的不同谱系数近似的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Communications in Applied and Industrial Mathematics (CAIM) is one of the official journals of the Italian Society for Applied and Industrial Mathematics (SIMAI). Providing immediate open access to original, unpublished high quality contributions, CAIM is devoted to timely report on ongoing original research work, new interdisciplinary subjects, and new developments. The journal focuses on the applications of mathematics to the solution of problems in industry, technology, environment, cultural heritage, and natural sciences, with a special emphasis on new and interesting mathematical ideas relevant to these fields of application . Encouraging novel cross-disciplinary approaches to mathematical research, CAIM aims to provide an ideal platform for scientists who cooperate in different fields including pure and applied mathematics, computer science, engineering, physics, chemistry, biology, medicine and to link scientist with professionals active in industry, research centres, academia or in the public sector. Coverage includes research articles describing new analytical or numerical methods, descriptions of modelling approaches, simulations for more accurate predictions or experimental observations of complex phenomena, verification/validation of numerical and experimental methods; invited or submitted reviews and perspectives concerning mathematical techniques in relation to applications, and and fields in which new problems have arisen for which mathematical models and techniques are not yet available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信