Log Canonical Thresholds on Burniat Surfaces with $K^2 = 6$ via Pluricanonical Divisors

Pub Date : 2022-01-01 DOI:10.11650/tjm/220605
In-kyun Kim, Y. Shin
{"title":"Log Canonical Thresholds on Burniat Surfaces with $K^2 = 6$ via Pluricanonical Divisors","authors":"In-kyun Kim, Y. Shin","doi":"10.11650/tjm/220605","DOIUrl":null,"url":null,"abstract":". Let S be a Burniat surface with K 2 S = 6 and ϕ be the bicanonical map of S . In this paper we show optimal lower bounds of log canonical thresholds of members of pluricanonical sublinear systems of S via Klein group G induced by ϕ . Indeed, for a positive even integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m ) (resp. 1 / (2 m − 2)). For a positive odd integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m − 5) (resp. 1 / (2 m )). The inequalities are all optimal.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. Let S be a Burniat surface with K 2 S = 6 and ϕ be the bicanonical map of S . In this paper we show optimal lower bounds of log canonical thresholds of members of pluricanonical sublinear systems of S via Klein group G induced by ϕ . Indeed, for a positive even integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m ) (resp. 1 / (2 m − 2)). For a positive odd integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m − 5) (resp. 1 / (2 m )). The inequalities are all optimal.
分享
查看原文
K^2 = 6的燃烧曲面上的对数正则阈值
. 设S为一个Burniat曲面,其中K 2 S = 6, φ为S的双标准映射。本文通过Klein群G,给出了由φ诱导的S的多正则次线性系统的对数正则阈值的最优下界。实际上,对于正偶数m,一个不变量(正则表达式)的成员的对数正则阈值。逆不变)部分| mK S |大于或等于1 / (2 m)(相对于。1 / (2 m−2))。对于正奇数m,不变量(正则表达式)的成员的对数正则阈值。逆不变)部分| mK S |大于等于1 / (2 m−5)(p < 0.05)。1 / (2m))。不等式都是最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信