{"title":"Log Canonical Thresholds on Burniat Surfaces with $K^2 = 6$ via Pluricanonical Divisors","authors":"In-kyun Kim, Y. Shin","doi":"10.11650/tjm/220605","DOIUrl":null,"url":null,"abstract":". Let S be a Burniat surface with K 2 S = 6 and ϕ be the bicanonical map of S . In this paper we show optimal lower bounds of log canonical thresholds of members of pluricanonical sublinear systems of S via Klein group G induced by ϕ . Indeed, for a positive even integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m ) (resp. 1 / (2 m − 2)). For a positive odd integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m − 5) (resp. 1 / (2 m )). The inequalities are all optimal.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
. Let S be a Burniat surface with K 2 S = 6 and ϕ be the bicanonical map of S . In this paper we show optimal lower bounds of log canonical thresholds of members of pluricanonical sublinear systems of S via Klein group G induced by ϕ . Indeed, for a positive even integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m ) (resp. 1 / (2 m − 2)). For a positive odd integer m , the log canonical threshold of members of an invariant (resp. anti-invariant) part of | mK S | is greater than or equal to 1 / (2 m − 5) (resp. 1 / (2 m )). The inequalities are all optimal.