{"title":"An Analysis and Modeling of the Dynamic Stability of the Cutting Process Against Self-Excited Vibration","authors":"A. Motallebia, A. Doniavi, Y. Sahebi","doi":"10.2478/mme-2019-0005","DOIUrl":null,"url":null,"abstract":"Abstract Chatter is a self-excited vibration that depends on several parameters such as the dynamic characteristics of a machine tool structure, the material of work piece, the material removal rate, and the geometry of tools. Chatter has an undesirable effect on dimensional accuracy, smoothness of work piece surface, lifetime of tools and machine tools. Thus, it is useful to understand this phenomenon in order to improve the economic aspect of machining. In the present article, firstly, the theoretical study and mathematical modeling of chatter in the cutting process were carried out. Then, by performing modal testing on a milling machine and drawing chatter stability diagrams, we determined the stability regions of the machine tool operation and recognized the parameter that had the most important effect on chatter.","PeriodicalId":53557,"journal":{"name":"Mechanics and Mechanical Engineering","volume":"23 1","pages":"28 - 35"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mme-2019-0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Chatter is a self-excited vibration that depends on several parameters such as the dynamic characteristics of a machine tool structure, the material of work piece, the material removal rate, and the geometry of tools. Chatter has an undesirable effect on dimensional accuracy, smoothness of work piece surface, lifetime of tools and machine tools. Thus, it is useful to understand this phenomenon in order to improve the economic aspect of machining. In the present article, firstly, the theoretical study and mathematical modeling of chatter in the cutting process were carried out. Then, by performing modal testing on a milling machine and drawing chatter stability diagrams, we determined the stability regions of the machine tool operation and recognized the parameter that had the most important effect on chatter.