Sheng Chang, Lijun Shen, Linlin Li, Xi Chen, Hua Han
{"title":"Denoising of scanning electron microscope images for biological ultrastructure enhancement","authors":"Sheng Chang, Lijun Shen, Linlin Li, Xi Chen, Hua Han","doi":"10.1142/S021972002250007X","DOIUrl":null,"url":null,"abstract":"Scanning electron microscopy (SEM) is of great significance for analyzing the ultrastructure. However, due to the requirements of data throughput and electron dose of biological samples in the imaging process, the SEM image of biological samples is often occupied by noise which severely affects the observation of ultrastructure. Therefore, it is necessary to analyze and establish a noise model of SEM and propose an effective denoising algorithm that can preserve the ultrastructure. We first investigated the noise source of SEM images and introduced a signal-related SEM noise model. Then, we validated the effectiveness of the noise model through experiments, which are designed with standard samples to reflect the relation between real signal intensity and noise. Based on the SEM noise model and traditional variance stabilization denoising strategy, we proposed a novel, two-stage denoising method. In the first stage variance stabilization, our VS-Net realizes the separation of signal-dependent noise and signal in the SEM image. In the second stage denoising, our D-Net employs the structure of U-Net and combines the attention mechanism to achieve efficient noise removal. Compared with other existing denoising methods for SEM images, our proposed method is more competitive in objective evaluation and visual effects. Source code is available on GitHub (https://github.com/VictorCSheng/VSID-Net).","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":"1 1","pages":"2250007"},"PeriodicalIF":0.9000,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S021972002250007X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Scanning electron microscopy (SEM) is of great significance for analyzing the ultrastructure. However, due to the requirements of data throughput and electron dose of biological samples in the imaging process, the SEM image of biological samples is often occupied by noise which severely affects the observation of ultrastructure. Therefore, it is necessary to analyze and establish a noise model of SEM and propose an effective denoising algorithm that can preserve the ultrastructure. We first investigated the noise source of SEM images and introduced a signal-related SEM noise model. Then, we validated the effectiveness of the noise model through experiments, which are designed with standard samples to reflect the relation between real signal intensity and noise. Based on the SEM noise model and traditional variance stabilization denoising strategy, we proposed a novel, two-stage denoising method. In the first stage variance stabilization, our VS-Net realizes the separation of signal-dependent noise and signal in the SEM image. In the second stage denoising, our D-Net employs the structure of U-Net and combines the attention mechanism to achieve efficient noise removal. Compared with other existing denoising methods for SEM images, our proposed method is more competitive in objective evaluation and visual effects. Source code is available on GitHub (https://github.com/VictorCSheng/VSID-Net).
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.