{"title":"Combinatorial Belyi Cuspidalization and Arithmetic Subquotients of the Grothendieck–Teichmüller Group","authors":"Shota Tsujimura","doi":"10.4171/prims/56-4-5","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a certain combinatorial version of the theory of Belyi cuspidalization developed by Mochizuki. Write Q ⊆ C for the subfield of algebraic numbers ∈ C. We then apply this theory of combinatorial Belyi cuspidalization to certain natural closed subgroups of the Grothendieck-Teichmüller group associated to the field of p-adic numbers [where p is a prime number] and to stably ×μ-indivisible subfields of Q, i.e., subfields for which every finite field extension satisfies the property that every nonzero divisible element in the field extension is a root of unity. 2010 Mathematics Subject Classification: Primary 14H30.","PeriodicalId":54528,"journal":{"name":"Publications of the Research Institute for Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2020-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4171/prims/56-4-5","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Research Institute for Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/prims/56-4-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8
Abstract
In this paper, we develop a certain combinatorial version of the theory of Belyi cuspidalization developed by Mochizuki. Write Q ⊆ C for the subfield of algebraic numbers ∈ C. We then apply this theory of combinatorial Belyi cuspidalization to certain natural closed subgroups of the Grothendieck-Teichmüller group associated to the field of p-adic numbers [where p is a prime number] and to stably ×μ-indivisible subfields of Q, i.e., subfields for which every finite field extension satisfies the property that every nonzero divisible element in the field extension is a root of unity. 2010 Mathematics Subject Classification: Primary 14H30.
期刊介绍:
The aim of the Publications of the Research Institute for Mathematical Sciences (PRIMS) is to publish original research papers in the mathematical sciences.