{"title":"Development of the brainstem respiratory circuit","authors":"Meike E. van der Heijden, H. Zoghbi","doi":"10.1002/wdev.366","DOIUrl":null,"url":null,"abstract":"The respiratory circuit is comprised of over a dozen functionally and anatomically segregated brainstem nuclei that work together to control respiratory rhythms. These respiratory rhythms emerge prenatally but only acquire vital importance at birth, which is the first time the respiratory circuit faces the sole responsibility for O2/CO2 homeostasis. Hence, the respiratory circuit has little room for trial‐and‐error‐dependent fine tuning and relies on a detailed genetic blueprint for development. This blueprint is provided by transcription factors that have specific spatiotemporal expression patterns along the rostral‐caudal or dorsal‐ventral axis of the developing brainstem, in proliferating precursor cells and postmitotic neurons. Studying these transcription factors in mice has provided key insights into the functional segregation of respiratory control and the vital importance of specific respiratory nuclei. Many studies converge on just two respiratory nuclei that each have rhythmogenic properties during the prenatal period: the preBötzinger complex (preBötC) and retrotrapezoid nucleus/parafacial nucleus (RTN/pF). Here, we discuss the transcriptional regulation that guides the development of these nuclei. We also summarize evidence showing that normal preBötC development is necessary for neonatal survival, and that neither the preBötC nor the RTN/pF alone is sufficient to sustain normal postnatal respiratory rhythms. Last, we highlight several studies that use intersectional genetics to assess the necessity of transcription factors only in subregions of their expression domain. These studies independently demonstrate that lack of RTN/pF neurons weakens the respiratory circuit, yet these neurons are not necessary for neonatal survival because developmentally related populations can compensate for abnormal RTN/pF function at birth.","PeriodicalId":23630,"journal":{"name":"Wiley Interdisciplinary Reviews: Developmental Biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/wdev.366","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Developmental Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/wdev.366","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 12
Abstract
The respiratory circuit is comprised of over a dozen functionally and anatomically segregated brainstem nuclei that work together to control respiratory rhythms. These respiratory rhythms emerge prenatally but only acquire vital importance at birth, which is the first time the respiratory circuit faces the sole responsibility for O2/CO2 homeostasis. Hence, the respiratory circuit has little room for trial‐and‐error‐dependent fine tuning and relies on a detailed genetic blueprint for development. This blueprint is provided by transcription factors that have specific spatiotemporal expression patterns along the rostral‐caudal or dorsal‐ventral axis of the developing brainstem, in proliferating precursor cells and postmitotic neurons. Studying these transcription factors in mice has provided key insights into the functional segregation of respiratory control and the vital importance of specific respiratory nuclei. Many studies converge on just two respiratory nuclei that each have rhythmogenic properties during the prenatal period: the preBötzinger complex (preBötC) and retrotrapezoid nucleus/parafacial nucleus (RTN/pF). Here, we discuss the transcriptional regulation that guides the development of these nuclei. We also summarize evidence showing that normal preBötC development is necessary for neonatal survival, and that neither the preBötC nor the RTN/pF alone is sufficient to sustain normal postnatal respiratory rhythms. Last, we highlight several studies that use intersectional genetics to assess the necessity of transcription factors only in subregions of their expression domain. These studies independently demonstrate that lack of RTN/pF neurons weakens the respiratory circuit, yet these neurons are not necessary for neonatal survival because developmentally related populations can compensate for abnormal RTN/pF function at birth.
期刊介绍:
Developmental biology is concerned with the fundamental question of how a single cell, the fertilized egg, ultimately produces a complex, fully patterned adult organism. This problem is studied on many different biological levels, from the molecular to the organismal. Developed in association with the Society for Developmental Biology, WIREs Developmental Biology will provide a unique interdisciplinary forum dedicated to fostering excellence in research and education and communicating key advances in this important field. The collaborative and integrative ethos of the WIREs model will facilitate connections to related disciplines such as genetics, systems biology, bioengineering, and psychology.
The topical coverage of WIREs Developmental Biology includes: Establishment of Spatial and Temporal Patterns; Gene Expression and Transcriptional Hierarchies; Signaling Pathways; Early Embryonic Development; Invertebrate Organogenesis; Vertebrate Organogenesis; Nervous System Development; Birth Defects; Adult Stem Cells, Tissue Renewal and Regeneration; Cell Types and Issues Specific to Plants; Comparative Development and Evolution; and Technologies.