{"title":"Cave monitoring in Hungary: An overview","authors":"","doi":"10.1556/24.2021.00109","DOIUrl":null,"url":null,"abstract":"\n In this study, already published and new monitoring data are compiled from the Baradla and Béke caves in the Aggtelek Karst, from the Vacska Cave in the Pilis Mountains as well as from the Szemlőhegy and Pálvölgy caves in the Buda Hills. Recent investigations (2019–2020) include monitoring of climatological parameters (e.g., temperature, CO2) measured inside and outside the caves, and the chemical, trace element and stable isotopic compositions of drip waters. In the Baradla Cave, the main focus of the investigation was on the stable isotope composition and the temperature measurements of drip water. In the Vacska Cave, which belongs to the Ajándék-Ariadne cave system, CO2 measurements and drip water collection were conducted in order to perform chemical and stable isotope measurements. In the Szemlőhegy and Pálvölgy caves, the chemical and stable isotope compositions of drip waters at six sites were determined. These datasets were used to characterize the studied caves and the hydrological processes taking place in the karst, and to trace anthropogenic influences. Climatological investigation revealed seasonality in CO2 concentration related to outside temperature variation, indicating a variable ventilation regime in the caves. In addition, the contributions of the winter and summer precipitation to the drip water were also estimated, in order to evaluate the main infiltration period. The knowledge of these parameters plays a crucial role in constraining the carbonate precipitation within the cave. Thus, the dataset compiled in this study can provide a basis for the interpretation of speleothem-based proxies.","PeriodicalId":39930,"journal":{"name":"Central European Geology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Geology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/24.2021.00109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this study, already published and new monitoring data are compiled from the Baradla and Béke caves in the Aggtelek Karst, from the Vacska Cave in the Pilis Mountains as well as from the Szemlőhegy and Pálvölgy caves in the Buda Hills. Recent investigations (2019–2020) include monitoring of climatological parameters (e.g., temperature, CO2) measured inside and outside the caves, and the chemical, trace element and stable isotopic compositions of drip waters. In the Baradla Cave, the main focus of the investigation was on the stable isotope composition and the temperature measurements of drip water. In the Vacska Cave, which belongs to the Ajándék-Ariadne cave system, CO2 measurements and drip water collection were conducted in order to perform chemical and stable isotope measurements. In the Szemlőhegy and Pálvölgy caves, the chemical and stable isotope compositions of drip waters at six sites were determined. These datasets were used to characterize the studied caves and the hydrological processes taking place in the karst, and to trace anthropogenic influences. Climatological investigation revealed seasonality in CO2 concentration related to outside temperature variation, indicating a variable ventilation regime in the caves. In addition, the contributions of the winter and summer precipitation to the drip water were also estimated, in order to evaluate the main infiltration period. The knowledge of these parameters plays a crucial role in constraining the carbonate precipitation within the cave. Thus, the dataset compiled in this study can provide a basis for the interpretation of speleothem-based proxies.