A SIMULATION STUDY OF FIXED-B ASYMPTOTIC DISTRIBUTIONS IN LINEAR PANEL MODELS WITH FIXED EFFECTS

I. Setyowati, K. Notodiputro, A. Kurnia
{"title":"A SIMULATION STUDY OF FIXED-B ASYMPTOTIC DISTRIBUTIONS IN LINEAR PANEL MODELS WITH FIXED EFFECTS","authors":"I. Setyowati, K. Notodiputro, A. Kurnia","doi":"10.14710/medstat.13.2.206-217","DOIUrl":null,"url":null,"abstract":"In linear models, panel data often violates the assumption that the error terms should be independent. As a result, the estimated variance is usually large and the standard inferential methods are not appropriate. The previous research developed an inference method to solve this problem using a variance estimator namely the Heteroskedasticity Autocorrelation Consistent of the Cross-Section Averages (HACSC), with some improvements. The test statistic of this method converges to the fixed-b asymptotic distribution. In this paper, the performance of the proposed inferential method is evaluated by means of simulation and compared with the standard method using plm package in R. Several comparisons regarding the Type I Error of these two methods have been carried out. The results showed that the statistical inference based on fixed-b asymptotic distribution out-perform the standard method, especially for the panel data with small number of individual and time dimension.","PeriodicalId":34146,"journal":{"name":"Media Statistika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Media Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/medstat.13.2.206-217","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In linear models, panel data often violates the assumption that the error terms should be independent. As a result, the estimated variance is usually large and the standard inferential methods are not appropriate. The previous research developed an inference method to solve this problem using a variance estimator namely the Heteroskedasticity Autocorrelation Consistent of the Cross-Section Averages (HACSC), with some improvements. The test statistic of this method converges to the fixed-b asymptotic distribution. In this paper, the performance of the proposed inferential method is evaluated by means of simulation and compared with the standard method using plm package in R. Several comparisons regarding the Type I Error of these two methods have been carried out. The results showed that the statistical inference based on fixed-b asymptotic distribution out-perform the standard method, especially for the panel data with small number of individual and time dimension.
具有固定效应的线性面板模型中固定b渐近分布的仿真研究
在线性模型中,面板数据经常违背误差项应该独立的假设。因此,估计的方差通常很大,并且标准的推理方法是不合适的。先前的研究开发了一种使用方差估计器来解决这个问题的推理方法,即横截面平均值的异方差自相关一致性(HACSC),并进行了一些改进。该方法的检验统计量收敛于固定的b-渐近分布。本文通过仿真评估了所提出的推理方法的性能,并与R中使用plm包的标准方法进行了比较。对这两种方法的I型误差进行了几次比较。结果表明,基于固定b渐近分布的统计推断优于标准方法,尤其是对于个体数量和时间维度较小的面板数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信