Exploring Heterogeneity with Category and Cluster Analyses for Mixed Data

IF 0.9 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Stats Pub Date : 2023-07-05 DOI:10.3390/stats6030048
V. Distefano, Maria Mannone, I. Poli
{"title":"Exploring Heterogeneity with Category and Cluster Analyses for Mixed Data","authors":"V. Distefano, Maria Mannone, I. Poli","doi":"10.3390/stats6030048","DOIUrl":null,"url":null,"abstract":"Precision medicine aims to overcome the traditional one-model-fits-the-whole-population approach that is unable to detect heterogeneous disease patterns and make accurate personalized predictions. Heterogeneity is particularly relevant for patients with complications of type 2 diabetes, including diabetic kidney disease (DKD). We focus on a DKD longitudinal dataset, aiming to find specific subgroups of patients with characteristics that have a close response to the therapeutic treatment. We develop an approach based on some particular concepts of category theory and cluster analysis to explore individualized modelings and achieving insights onto disease evolution. This paper exploits the visualization tools provided by category theory, and bridges category-based abstract works and real datasets. We build subgroups deriving clusters of patients at different time points, considering a set of variables characterizing the state of patients. We analyze how specific variables affect the disease progress, and which drug combinations are more effective for each cluster of patients. The retrieved information can foster individualized strategies for DKD treatment.","PeriodicalId":93142,"journal":{"name":"Stats","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stats","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/stats6030048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Precision medicine aims to overcome the traditional one-model-fits-the-whole-population approach that is unable to detect heterogeneous disease patterns and make accurate personalized predictions. Heterogeneity is particularly relevant for patients with complications of type 2 diabetes, including diabetic kidney disease (DKD). We focus on a DKD longitudinal dataset, aiming to find specific subgroups of patients with characteristics that have a close response to the therapeutic treatment. We develop an approach based on some particular concepts of category theory and cluster analysis to explore individualized modelings and achieving insights onto disease evolution. This paper exploits the visualization tools provided by category theory, and bridges category-based abstract works and real datasets. We build subgroups deriving clusters of patients at different time points, considering a set of variables characterizing the state of patients. We analyze how specific variables affect the disease progress, and which drug combinations are more effective for each cluster of patients. The retrieved information can foster individualized strategies for DKD treatment.
混合数据的分类聚类分析探索异质性
精准医学旨在克服传统的一个模型适合整个人群的方法,该方法无法检测异质性疾病模式并做出准确的个性化预测。异质性与2型糖尿病并发症(包括糖尿病肾病(DKD))患者尤其相关。我们专注于DKD纵向数据集,旨在寻找对治疗有密切反应的特定亚组患者。我们基于范畴论和聚类分析的一些特定概念开发了一种方法,以探索个性化建模并深入了解疾病进化。本文利用范畴理论提供的可视化工具,将基于范畴的抽象作品与真实数据集连接起来。我们建立了在不同时间点推导患者集群的亚组,考虑了一组表征患者状态的变量。我们分析了特定变量如何影响疾病进展,以及哪些药物组合对每一组患者更有效。检索到的信息可以促进DKD治疗的个性化策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
0
审稿时长
7 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信