Failure probability assessment of emergency safety barriers integrating an extension of event tree analysis and Fuzzy type‐2 analytic hierarchy process
{"title":"Failure probability assessment of emergency safety barriers integrating an extension of event tree analysis and Fuzzy type‐2 analytic hierarchy process","authors":"Samia Daas, F. Innal","doi":"10.1002/sys.21668","DOIUrl":null,"url":null,"abstract":"Liquefied petroleum gas (LPG) storage fires and explosions occur due to uncontrolled gas leaks and the gradual breakdown of associated safety barriers. By installing an effective safety barrier, these accidents can be greatly reduced. However, this study assesses the probability of failure of emergency safety barriers (ESBs) to help decision makers understand how they can support decisions to reduce the risks associated with LPG storage. In this context, an extension of the event tree analysis is proposed named emergency event tree analysis (EETA). The aim of this paper is to develop an integrated approach that uses interval type‐2 fuzzy sets and Analytic Hierarchy Process (AHP) method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers (ESBs). In addition, a case study on the failure probability assessment of the emergency safety barriers of the LPG plant in Algeria based on the proposed methodology is provided and carried out to illustrate its effectiveness and feasibility. The results demonstrated the ability of interval type‐2 fuzzy sets and the AHP method to provide highly reliable results and to evaluate the failure probability of emergency safety barriers in emergencies situations. However, the classical event tree analysis (CETA) does not take into account the possibility of assessing the emergency consequences of different accident scenarios. Consequently, it only allows you to estimate the occurrence probability of accident scenarios. The results of this study show that the value of the probability of failure of the emergency safety barriers can be used to estimate the probability of occurrence of emergency consequences under different accident scenarios, improved the reliability and help prioritize emergency improvement measures. The study provides scientific and operational references for analyzing emergency consequences of the various accident scenarios in all fields such as petrochemical, maritime industry, and health occupational.","PeriodicalId":54439,"journal":{"name":"Systems Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/sys.21668","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 2
Abstract
Liquefied petroleum gas (LPG) storage fires and explosions occur due to uncontrolled gas leaks and the gradual breakdown of associated safety barriers. By installing an effective safety barrier, these accidents can be greatly reduced. However, this study assesses the probability of failure of emergency safety barriers (ESBs) to help decision makers understand how they can support decisions to reduce the risks associated with LPG storage. In this context, an extension of the event tree analysis is proposed named emergency event tree analysis (EETA). The aim of this paper is to develop an integrated approach that uses interval type‐2 fuzzy sets and Analytic Hierarchy Process (AHP) method and emergency event tree analysis to handle uncertainty in the failure probability assessment of emergency safety barriers (ESBs). In addition, a case study on the failure probability assessment of the emergency safety barriers of the LPG plant in Algeria based on the proposed methodology is provided and carried out to illustrate its effectiveness and feasibility. The results demonstrated the ability of interval type‐2 fuzzy sets and the AHP method to provide highly reliable results and to evaluate the failure probability of emergency safety barriers in emergencies situations. However, the classical event tree analysis (CETA) does not take into account the possibility of assessing the emergency consequences of different accident scenarios. Consequently, it only allows you to estimate the occurrence probability of accident scenarios. The results of this study show that the value of the probability of failure of the emergency safety barriers can be used to estimate the probability of occurrence of emergency consequences under different accident scenarios, improved the reliability and help prioritize emergency improvement measures. The study provides scientific and operational references for analyzing emergency consequences of the various accident scenarios in all fields such as petrochemical, maritime industry, and health occupational.
期刊介绍:
Systems Engineering is a discipline whose responsibility it is to create and operate technologically enabled systems that satisfy stakeholder needs throughout their life cycle. Systems engineers reduce ambiguity by clearly defining stakeholder needs and customer requirements, they focus creativity by developing a system’s architecture and design and they manage the system’s complexity over time. Considerations taken into account by systems engineers include, among others, quality, cost and schedule, risk and opportunity under uncertainty, manufacturing and realization, performance and safety during operations, training and support, as well as disposal and recycling at the end of life. The journal welcomes original submissions in the field of Systems Engineering as defined above, but also encourages contributions that take an even broader perspective including the design and operation of systems-of-systems, the application of Systems Engineering to enterprises and complex socio-technical systems, the identification, selection and development of systems engineers as well as the evolution of systems and systems-of-systems over their entire lifecycle.
Systems Engineering integrates all the disciplines and specialty groups into a coordinated team effort forming a structured development process that proceeds from concept to realization to operation. Increasingly important topics in Systems Engineering include the role of executable languages and models of systems, the concurrent use of physical and virtual prototyping, as well as the deployment of agile processes. Systems Engineering considers both the business and the technical needs of all stakeholders with the goal of providing a quality product that meets the user needs. Systems Engineering may be applied not only to products and services in the private sector but also to public infrastructures and socio-technical systems whose precise boundaries are often challenging to define.