Monitoreo de calidad de agua y predicción de coliformes fecales en playas de Montevideo mediante algoritmos de aprendizaje automático

Innotec Pub Date : 2021-10-01 DOI:10.26461/22.07
A. Segura, Lía Sampognaro, Guzmán López, C. Crisci, Mathias Bourel, V. Vidal, Karina Eirin, Claudia Piccini, Carla Kruk, Gonzalo Perera
{"title":"Monitoreo de calidad de agua y predicción de coliformes fecales en playas de Montevideo mediante algoritmos de aprendizaje automático","authors":"A. Segura, Lía Sampognaro, Guzmán López, C. Crisci, Mathias Bourel, V. Vidal, Karina Eirin, Claudia Piccini, Carla Kruk, Gonzalo Perera","doi":"10.26461/22.07","DOIUrl":null,"url":null,"abstract":"We constructed artificial intelligence (AI) models to predict faecal water quality (CF) to aid management in recreational beaches. Historical data base generated by the Laboratorio de Calidad Ambiental de la Intendencia de Montevideo (IM) was analized and AI models wwere constructed to predict CF excess (CF >2.000). Ten years of monitoring 21 recreational beaches (N=19359, november 2009 to september 2019) presented a wide range of salinity and turbidity variability among beaches. CF showed an asymetric distribution (min=4, median=250, average=1.047 and max=1.280.000) with values exceeding the threshold in all beaches. In situ registered, meteorological and oceanographic variables were used to train AI models. A stratified random forest showed the best performance in the evaluated metrics with an overall accuracy of 86% and 60% of improvement in true positive rates with respect to baseline. High quality data generated by govermental institution together with modeling strategies provided a relevant framework to aid in beach and public health management.","PeriodicalId":30552,"journal":{"name":"Innotec","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innotec","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26461/22.07","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We constructed artificial intelligence (AI) models to predict faecal water quality (CF) to aid management in recreational beaches. Historical data base generated by the Laboratorio de Calidad Ambiental de la Intendencia de Montevideo (IM) was analized and AI models wwere constructed to predict CF excess (CF >2.000). Ten years of monitoring 21 recreational beaches (N=19359, november 2009 to september 2019) presented a wide range of salinity and turbidity variability among beaches. CF showed an asymetric distribution (min=4, median=250, average=1.047 and max=1.280.000) with values exceeding the threshold in all beaches. In situ registered, meteorological and oceanographic variables were used to train AI models. A stratified random forest showed the best performance in the evaluated metrics with an overall accuracy of 86% and 60% of improvement in true positive rates with respect to baseline. High quality data generated by govermental institution together with modeling strategies provided a relevant framework to aid in beach and public health management.
使用机器学习算法监测蒙得维的亚海滩的水质和预测粪便大肠菌群
我们构建了人工智能(AI)模型来预测粪便水质(CF),以帮助休闲海滩的管理。对蒙得维的亚强度环境实验室(IM)生成的历史数据库进行了分析,并构建了人工智能模型来预测CF过量(CF>2.000)。对21个休闲海滩(N=19359,2009年11月至2019年9月)进行了10年的监测,发现海滩之间的盐度和浊度变化范围很大。CF呈非对称分布(最小值=4,中值=250,平均值=1.047,最大值=1.280000),所有海滩的数值都超过了阈值。使用现场登记的气象和海洋学变量来训练人工智能模型。分层随机森林在评估的指标中表现出最好的性能,总体准确率为86%,相对于基线,真阳性率提高了60%。政府机构生成的高质量数据以及建模策略为海滩和公共卫生管理提供了相关框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
10
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信