{"title":"Supermanifolds corresponding to the trivial vector bundle over torus","authors":"M. Bashkin","doi":"10.46298/cm.9844","DOIUrl":null,"url":null,"abstract":"All supermanifolds whose retract $T^{m|n}$ is determined by the trivial bundle of rank $n$ over the torus $T^m$ are $\\overline 0$-homogeneous if and only if $T^{m|n}$ is homogeneous.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.9844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1
Abstract
All supermanifolds whose retract $T^{m|n}$ is determined by the trivial bundle of rank $n$ over the torus $T^m$ are $\overline 0$-homogeneous if and only if $T^{m|n}$ is homogeneous.
期刊介绍:
Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.