Geometric progressions in the sets of values of rational functions

Pub Date : 2024-07-01 DOI:10.1016/j.indag.2023.08.005
Maciej Ulas
{"title":"Geometric progressions in the sets of values of rational functions","authors":"Maciej Ulas","doi":"10.1016/j.indag.2023.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><mrow><mi>a</mi><mo>,</mo><mi>Q</mi><mo>∈</mo><mi>Q</mi></mrow></math></span> be given and consider the set <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>Q</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>{</mo><mi>a</mi><msup><mrow><mi>Q</mi></mrow><mrow><mi>i</mi></mrow></msup><mo>:</mo><mspace></mspace><mi>i</mi><mo>∈</mo><mi>N</mi><mo>}</mo></mrow></mrow></math></span> of terms of geometric progression with 0th term equal to <span><math><mi>a</mi></math></span> and the quotient <span><math><mi>Q</mi></math></span>. Let <span><math><mrow><mi>f</mi><mo>∈</mo><mi>Q</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mi>f</mi></mrow></msub></math></span> be the set of finite values of <span><math><mi>f</mi></math></span>. We consider the problem of existence of <span><math><mrow><mi>a</mi><mo>,</mo><mi>Q</mi><mo>∈</mo><mi>Q</mi></mrow></math></span> such that <span><math><mrow><mi>G</mi><mrow><mo>(</mo><mi>a</mi><mo>,</mo><mi>Q</mi><mo>)</mo></mrow><mo>⊂</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>f</mi></mrow></msub></mrow></math></span>. In the first part of the paper we describe certain classes of rational functions for which our problem has a positive solution. In the second, experimental, part of the paper we study the stated problem for the rational function <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mrow><mo>(</mo><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow><mo>/</mo><mi>x</mi></mrow></math></span>. We relate the problem to the existence of rational points on certain elliptic curves and present interesting numerical observations which allow us to state several questions and conjectures.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0019357723000824/pdfft?md5=6a0ec32c7eb19c5b691f6b150a52a65c&pid=1-s2.0-S0019357723000824-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723000824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let a,QQ be given and consider the set G(a,Q)={aQi:iN} of terms of geometric progression with 0th term equal to a and the quotient Q. Let fQ(x,y) and Vf be the set of finite values of f. We consider the problem of existence of a,QQ such that G(a,Q)Vf. In the first part of the paper we describe certain classes of rational functions for which our problem has a positive solution. In the second, experimental, part of the paper we study the stated problem for the rational function f(x,y)=(y2x3)/x. We relate the problem to the existence of rational points on certain elliptic curves and present interesting numerical observations which allow us to state several questions and conjectures.

分享
查看原文
有理函数值集中的几何级数
设 a,Q∈Q,并考虑第 0 项等于 a 的几何级数的项集 G(a,Q)={aQi:i∈N},以及商 Q。设 f∈Q(x,y),Vf 为 f 的有限值集。在论文的第一部分,我们描述了我们的问题有正解的几类有理函数。在论文的第二部分,即实验部分,我们研究了有理函数 f(x,y)=(y2-x3)/x 的既定问题。我们将这一问题与某些椭圆曲线上有理点的存在联系起来,并提出了有趣的数值观察结果,从而提出了几个问题和猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信