On the stochastic flow generated by the one default model in one-dimensional case

IF 0.3 Q4 STATISTICS & PROBABILITY
Yamina Khatir, Fatima Benziadi, A. Kandouci
{"title":"On the stochastic flow generated by the one default model in one-dimensional case","authors":"Yamina Khatir, Fatima Benziadi, A. Kandouci","doi":"10.1515/rose-2022-2093","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we will study an important property on the regularity of the trajectories of the stochastic flow generated by a famous model in finance. More precisely, we prove the differentiability with respect to initial data of the solution of the stochastic differential equation associated with this model based on Gronwall’s lemma, Itô’s isometry and Burkholder–Davis–Gundy’s and Hölder’s inequalities. This is the main motivation of our research.","PeriodicalId":43421,"journal":{"name":"Random Operators and Stochastic Equations","volume":"31 1","pages":"9 - 23"},"PeriodicalIF":0.3000,"publicationDate":"2023-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Operators and Stochastic Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rose-2022-2093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, we will study an important property on the regularity of the trajectories of the stochastic flow generated by a famous model in finance. More precisely, we prove the differentiability with respect to initial data of the solution of the stochastic differential equation associated with this model based on Gronwall’s lemma, Itô’s isometry and Burkholder–Davis–Gundy’s and Hölder’s inequalities. This is the main motivation of our research.
一维情况下由一个默认模型生成的随机流
摘要在本文中,我们将研究一个著名的金融模型产生的随机流动轨迹的规律性的一个重要性质。更准确地说,我们基于Gronwall引理、Itôs等距以及Burkholder–Davis–Gundy和Hölder不等式,证明了与该模型相关的随机微分方程解相对于初始数据的可微性。这是我们研究的主要动机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Operators and Stochastic Equations
Random Operators and Stochastic Equations STATISTICS & PROBABILITY-
CiteScore
0.60
自引率
25.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信