{"title":"Efficient pure qP-wave simulation and reverse time migration imaging for vertical transverse isotropic (VTI) media","authors":"X. Mu, Jianping Huang, Q. Mao, Jiale Han","doi":"10.1093/jge/gxad039","DOIUrl":null,"url":null,"abstract":"\n Anisotropic pseudo-acoustic forward modeling and migration imaging are critical for high-precision seismic exploration. However, the wavefields simulated by the traditional coupled anisotropic acoustic wave equation have the problems of shear wave noise and numerical simulation instability for epsilon that is less than delta. Furthermore, although the pure anisotropic acoustic wave equation expressed by the differential operators can solve the aforementioned noise interference and numerical simulation instability issues, its numerical simulation calculation is large, particularly in 3D industrial applications, because it has to be solved by the spectral-based method. In this paper, a pure anisotropic acoustic wave equation in a vertical transverse isotropic (VTI) medium that can be numerically computed using the efficient finite difference method is derived. This equation not only eliminates noise interference and numerical simulation instabilities, but also allows for efficient wavefield simulation. We also implement reverse time migration (RTM) using the proposed VTI pure anisotropic acoustic wave equation. Two synthetic tests and one field data test are performed to evaluate the accuracy and robustness of the developed VTI RTM. The imaging results show that the proposed VTI RTM can correct the anisotropy effect on seismic wave propagation and improve migration imaging precision.","PeriodicalId":54820,"journal":{"name":"Journal of Geophysics and Engineering","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysics and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/jge/gxad039","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Anisotropic pseudo-acoustic forward modeling and migration imaging are critical for high-precision seismic exploration. However, the wavefields simulated by the traditional coupled anisotropic acoustic wave equation have the problems of shear wave noise and numerical simulation instability for epsilon that is less than delta. Furthermore, although the pure anisotropic acoustic wave equation expressed by the differential operators can solve the aforementioned noise interference and numerical simulation instability issues, its numerical simulation calculation is large, particularly in 3D industrial applications, because it has to be solved by the spectral-based method. In this paper, a pure anisotropic acoustic wave equation in a vertical transverse isotropic (VTI) medium that can be numerically computed using the efficient finite difference method is derived. This equation not only eliminates noise interference and numerical simulation instabilities, but also allows for efficient wavefield simulation. We also implement reverse time migration (RTM) using the proposed VTI pure anisotropic acoustic wave equation. Two synthetic tests and one field data test are performed to evaluate the accuracy and robustness of the developed VTI RTM. The imaging results show that the proposed VTI RTM can correct the anisotropy effect on seismic wave propagation and improve migration imaging precision.
期刊介绍:
Journal of Geophysics and Engineering aims to promote research and developments in geophysics and related areas of engineering. It has a predominantly applied science and engineering focus, but solicits and accepts high-quality contributions in all earth-physics disciplines, including geodynamics, natural and controlled-source seismology, oil, gas and mineral exploration, petrophysics and reservoir geophysics. The journal covers those aspects of engineering that are closely related to geophysics, or on the targets and problems that geophysics addresses. Typically, this is engineering focused on the subsurface, particularly petroleum engineering, rock mechanics, geophysical software engineering, drilling technology, remote sensing, instrumentation and sensor design.