Arithmetic quotients of the automorphism group of a right-angled Artin group

Pub Date : 2020-05-04 DOI:10.4171/ggd/691
Justin Malestein
{"title":"Arithmetic quotients of the automorphism group of a right-angled Artin group","authors":"Justin Malestein","doi":"10.4171/ggd/691","DOIUrl":null,"url":null,"abstract":"It was previously shown by Grunewald and Lubotzky that the automorphism group of a free group, $\\text{Aut}(F_n)$, has a large collection of virtual arithmetic quotients. Analogous results were proved for the mapping class group by Looijenga and by Grunewald, Larsen, Lubotzky, and Malestein. In this paper, we prove analogous results for the automorphism group of a right-angled Artin group for a large collection of defining graphs. As a corollary of our methods we produce new virtual arithmetic quotients of $\\text{Aut}(F_n)$ for $n \\geq 4$ where $k$th powers of all transvections act trivially for some fixed $k$. Thus, for some values of $k$, we deduce that the quotient of $\\text{Aut}(F_n)$ by the subgroup generated by $k$th powers of transvections contains nonabelian free groups. This expands on results of Malestein and Putman and of Bridson and Vogtmann.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It was previously shown by Grunewald and Lubotzky that the automorphism group of a free group, $\text{Aut}(F_n)$, has a large collection of virtual arithmetic quotients. Analogous results were proved for the mapping class group by Looijenga and by Grunewald, Larsen, Lubotzky, and Malestein. In this paper, we prove analogous results for the automorphism group of a right-angled Artin group for a large collection of defining graphs. As a corollary of our methods we produce new virtual arithmetic quotients of $\text{Aut}(F_n)$ for $n \geq 4$ where $k$th powers of all transvections act trivially for some fixed $k$. Thus, for some values of $k$, we deduce that the quotient of $\text{Aut}(F_n)$ by the subgroup generated by $k$th powers of transvections contains nonabelian free groups. This expands on results of Malestein and Putman and of Bridson and Vogtmann.
分享
查看原文
直角Artin群的自同构群的算术商
Grunewald和Lubotzky已经证明了自由群$\text{Aut}(F_n)$的自同构群有大量的虚算术商集合。loijenga和Grunewald, Larsen, Lubotzky和Malestein对映射类群证明了类似的结果。在本文中,我们证明了一个直角Artin群的自同构群对于一个大的定义图集合的类似结果。作为我们的方法的一个推论,我们为$n \geq 4$产生了新的虚拟算术商$\text{Aut}(F_n)$,其中$k$对于某些固定的$k$,所有横切的幂都起平凡的作用。因此,对于$k$的某些值,我们推导出由$k$次变换产生的子群所构成的$\text{Aut}(F_n)$的商包含非abel自由群。这是对Malestein和Putman以及Bridson和Vogtmann的结果的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信