Improving Probabilistic Record Linkage Using Statistical Prediction Models

IF 1.7 3区 数学 Q1 STATISTICS & PROBABILITY
Angelo Moretti, N. Shlomo
{"title":"Improving Probabilistic Record Linkage Using Statistical Prediction Models","authors":"Angelo Moretti, N. Shlomo","doi":"10.1111/insr.12535","DOIUrl":null,"url":null,"abstract":"Record linkage brings together information from records in two or more data sources that are believed to belong to the same statistical unit based on a common set of matching variables. Matching variables, however, can appear with errors and variations and the challenge is to link statistical units that are subject to error. We provide an overview of record linkage techniques and specifically investigate the classic Fellegi and Sunter probabilistic record linkage framework to assess whether the decision rule for classifying pairs into sets of matches and non‐matches can be improved by incorporating a statistical prediction model. We also study whether the enhanced linkage rule can provide better results in terms of preserving associations between variables in the linked data file that are not used in the matching procedure. A simulation study and an application based on real data are used to evaluate the methods.","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/insr.12535","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Record linkage brings together information from records in two or more data sources that are believed to belong to the same statistical unit based on a common set of matching variables. Matching variables, however, can appear with errors and variations and the challenge is to link statistical units that are subject to error. We provide an overview of record linkage techniques and specifically investigate the classic Fellegi and Sunter probabilistic record linkage framework to assess whether the decision rule for classifying pairs into sets of matches and non‐matches can be improved by incorporating a statistical prediction model. We also study whether the enhanced linkage rule can provide better results in terms of preserving associations between variables in the linked data file that are not used in the matching procedure. A simulation study and an application based on real data are used to evaluate the methods.
利用统计预测模型改进概率记录链接
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Statistical Review
International Statistical Review 数学-统计学与概率论
CiteScore
4.30
自引率
5.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信