{"title":"Semantic Segmentation Using DeepLabv3+ Model for Fabric Defect Detection","authors":"Runhu Zhu, B. Xin, N. Deng, Mingzhu Fan","doi":"10.1051/wujns/2022276539","DOIUrl":null,"url":null,"abstract":"Currently, numerous automatic fabric defect detection algorithms have been proposed. Traditional machine vision algorithms that set separate parameters for different textures and defects rely on the manual design of corresponding features to complete the detection. To overcome the limitations of traditional algorithms, deep learning-based correlative algorithms can extract more complex image features and perform better in image classification and object detection. A pixel-level defect segmentation methodology using DeepLabv3+, a classical semantic segmentation network, is proposed in this paper. Based on ResNet-18, ResNet-50 and Mobilenetv2, three DeepLabv3+ networks are constructed, which are trained and tested from data sets produced by capturing or publicizing images. The experimental results show that the performance of three DeepLabv3+ networks is close to one another on the four indicators proposed (Precision, Recall, F1-score and Accuracy), proving them to achieve defect detection and semantic segmentation, which provide new ideas and technical support for fabric defect detection.","PeriodicalId":23976,"journal":{"name":"Wuhan University Journal of Natural Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wuhan University Journal of Natural Sciences","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/wujns/2022276539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0
Abstract
Currently, numerous automatic fabric defect detection algorithms have been proposed. Traditional machine vision algorithms that set separate parameters for different textures and defects rely on the manual design of corresponding features to complete the detection. To overcome the limitations of traditional algorithms, deep learning-based correlative algorithms can extract more complex image features and perform better in image classification and object detection. A pixel-level defect segmentation methodology using DeepLabv3+, a classical semantic segmentation network, is proposed in this paper. Based on ResNet-18, ResNet-50 and Mobilenetv2, three DeepLabv3+ networks are constructed, which are trained and tested from data sets produced by capturing or publicizing images. The experimental results show that the performance of three DeepLabv3+ networks is close to one another on the four indicators proposed (Precision, Recall, F1-score and Accuracy), proving them to achieve defect detection and semantic segmentation, which provide new ideas and technical support for fabric defect detection.
期刊介绍:
Wuhan University Journal of Natural Sciences aims to promote rapid communication and exchange between the World and Wuhan University, as well as other Chinese universities and academic institutions. It mainly reflects the latest advances being made in many disciplines of scientific research in Chinese universities and academic institutions. The journal also publishes papers presented at conferences in China and abroad. The multi-disciplinary nature of Wuhan University Journal of Natural Sciences is apparent in the wide range of articles from leading Chinese scholars. This journal also aims to introduce Chinese academic achievements to the world community, by demonstrating the significance of Chinese scientific investigations.