Semantic Segmentation Using DeepLabv3+ Model for Fabric Defect Detection

Q3 Multidisciplinary
Runhu Zhu, B. Xin, N. Deng, Mingzhu Fan
{"title":"Semantic Segmentation Using DeepLabv3+ Model for Fabric Defect Detection","authors":"Runhu Zhu, B. Xin, N. Deng, Mingzhu Fan","doi":"10.1051/wujns/2022276539","DOIUrl":null,"url":null,"abstract":"Currently, numerous automatic fabric defect detection algorithms have been proposed. Traditional machine vision algorithms that set separate parameters for different textures and defects rely on the manual design of corresponding features to complete the detection. To overcome the limitations of traditional algorithms, deep learning-based correlative algorithms can extract more complex image features and perform better in image classification and object detection. A pixel-level defect segmentation methodology using DeepLabv3+, a classical semantic segmentation network, is proposed in this paper. Based on ResNet-18, ResNet-50 and Mobilenetv2, three DeepLabv3+ networks are constructed, which are trained and tested from data sets produced by capturing or publicizing images. The experimental results show that the performance of three DeepLabv3+ networks is close to one another on the four indicators proposed (Precision, Recall, F1-score and Accuracy), proving them to achieve defect detection and semantic segmentation, which provide new ideas and technical support for fabric defect detection.","PeriodicalId":23976,"journal":{"name":"Wuhan University Journal of Natural Sciences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wuhan University Journal of Natural Sciences","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1051/wujns/2022276539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, numerous automatic fabric defect detection algorithms have been proposed. Traditional machine vision algorithms that set separate parameters for different textures and defects rely on the manual design of corresponding features to complete the detection. To overcome the limitations of traditional algorithms, deep learning-based correlative algorithms can extract more complex image features and perform better in image classification and object detection. A pixel-level defect segmentation methodology using DeepLabv3+, a classical semantic segmentation network, is proposed in this paper. Based on ResNet-18, ResNet-50 and Mobilenetv2, three DeepLabv3+ networks are constructed, which are trained and tested from data sets produced by capturing or publicizing images. The experimental results show that the performance of three DeepLabv3+ networks is close to one another on the four indicators proposed (Precision, Recall, F1-score and Accuracy), proving them to achieve defect detection and semantic segmentation, which provide new ideas and technical support for fabric defect detection.
基于DeepLabv3+模型的织物疵点检测语义分割
目前,已经提出了许多织物缺陷自动检测算法。传统的机器视觉算法对不同的纹理和缺陷设置单独的参数,依靠人工设计相应的特征来完成检测。为了克服传统算法的局限性,基于深度学习的相关算法可以提取更复杂的图像特征,在图像分类和目标检测方面表现更好。提出了一种基于经典语义分割网络DeepLabv3+的像素级缺陷分割方法。基于ResNet-18、ResNet-50和Mobilenetv2,构建了三个DeepLabv3+网络,通过采集或发布图像产生的数据集对其进行训练和测试。实验结果表明,三种DeepLabv3+网络在提出的四个指标(Precision、Recall、F1-score和Accuracy)上的性能接近,证明了它们能够实现疵点检测和语义分割,为织物疵点检测提供了新的思路和技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wuhan University Journal of Natural Sciences
Wuhan University Journal of Natural Sciences Multidisciplinary-Multidisciplinary
CiteScore
0.40
自引率
0.00%
发文量
2485
期刊介绍: Wuhan University Journal of Natural Sciences aims to promote rapid communication and exchange between the World and Wuhan University, as well as other Chinese universities and academic institutions. It mainly reflects the latest advances being made in many disciplines of scientific research in Chinese universities and academic institutions. The journal also publishes papers presented at conferences in China and abroad. The multi-disciplinary nature of Wuhan University Journal of Natural Sciences is apparent in the wide range of articles from leading Chinese scholars. This journal also aims to introduce Chinese academic achievements to the world community, by demonstrating the significance of Chinese scientific investigations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信