Weighted fourth order equation of Kirchhoff type in dimension 4 with non-linear exponential growth

IF 0.7 4区 数学 Q2 MATHEMATICS
Rached Jaidane
{"title":"Weighted fourth order equation of Kirchhoff type in dimension 4 with non-linear exponential growth","authors":"Rached Jaidane","doi":"10.12775/tmna.2023.005","DOIUrl":null,"url":null,"abstract":"In this work, we are concerned with the existence of a ground state solution\n for a Kirchhoff weighted problem under boundary Dirichlet condition\n in the unit ball of $\\mathbb{R}^{4}$.\n The nonlinearities have critical growth in view of Adams'\n inequalities. To prove the existence result, we use Pass Mountain Theorem.\nThe main difficulty is\nthe loss of compactness due to the critical exponential growth of the nonlinear\nterm $f$. The associated energy function does not satisfy\n the condition of compactness. We provide a new condition for growth and we stress its importance\n to check the min-max compactness level.","PeriodicalId":23130,"journal":{"name":"Topological Methods in Nonlinear Analysis","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topological Methods in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2023.005","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we are concerned with the existence of a ground state solution for a Kirchhoff weighted problem under boundary Dirichlet condition in the unit ball of $\mathbb{R}^{4}$. The nonlinearities have critical growth in view of Adams' inequalities. To prove the existence result, we use Pass Mountain Theorem. The main difficulty is the loss of compactness due to the critical exponential growth of the nonlinear term $f$. The associated energy function does not satisfy the condition of compactness. We provide a new condition for growth and we stress its importance to check the min-max compactness level.
具有非线性指数增长的4维Kirchhoff型加权四阶方程
本文研究了$\mathbb{R}^{4}$的单位球中边界Dirichlet条件下Kirchhoff加权问题基态解的存在性。考虑到亚当斯不等式,非线性有临界增长。为了证明存在性结果,我们使用了关山定理。主要的困难是由于非线性项f的临界指数增长导致紧性的损失。关联能量函数不满足紧性条件。我们提供了一个新的生长条件,并强调了其对检验最小最大紧致程度的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
57
审稿时长
>12 weeks
期刊介绍: Topological Methods in Nonlinear Analysis (TMNA) publishes research and survey papers on a wide range of nonlinear analysis, giving preference to those that employ topological methods. Papers in topology that are of interest in the treatment of nonlinear problems may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信