{"title":"Effects of selective-logging, litter and tree species on forests in the Peruvian Amazon: seed predation, seed pathogens, germination","authors":"R. Myster","doi":"10.33494/nzjfs512021x153x","DOIUrl":null,"url":null,"abstract":"Background: The Amazon basin contains mainly unflooded forests, and they are among the most important ecosystems in the world. Field experiments on seed processes are very important in order to understand the structure, function and dynamics of these forests.\nMethods: And so tree seeds of three species (Cecropia latiloba, Guarea macrophylla, Socratea exorrhiza) were set out in Amazon unlogged terra firme forest, in Amazon selectively-logged terra firme forest, in Amazon palm forest, and in Amazon white sand forest either on top of or beneath the litter layer, and after two weeks scored for seeds taken by predators, seeds destroyed by pathogens and seeds that germinated.\nResults: I found both terra firme forests (unlogged and selectively-logged) lost most of their seed to predators and the least of their seed to pathogens, white sand forests lost the least of their seed to predators and the most of their seed to pathogens, and the fewest seeds germinated in both terra firme forests and in palm forest. More specifically (1) within unlogged terra firme forest addition of litter reduced seed predation but increased seed losses to pathogens and germination, and C. latiloba lost the most seeds to pathogens, (2) within selectively-logged terra firme forest seeds showed the same trends as unlogged terra firme forest but without significant effects, (3) within palm forest addition of litter reduced predation but increased losses to pathogens, and S. exorrhiza lost the least seeds to pathogens, and (4) within white sand forests addition of litter increased germination. Combining the results from all forests together, predators took most of the seeds, pathogens took most of the seeds that escaped predation, and most of the seeds that survived predation and pathogens germinated.\nConclusion: While such large losses of tree seed to predators and pathogens in these unflooded forests suggest limited recruitment, the variation demonstrated in these field experiments – among forest-types, among tree species, between litter situations on the forest floor – help to insure that recruitment does occur and that these unflooded forests continue to dominate the Amazon basin.","PeriodicalId":19172,"journal":{"name":"New Zealand Journal of Forestry Science","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Forestry Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.33494/nzjfs512021x153x","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 1
Abstract
Background: The Amazon basin contains mainly unflooded forests, and they are among the most important ecosystems in the world. Field experiments on seed processes are very important in order to understand the structure, function and dynamics of these forests.
Methods: And so tree seeds of three species (Cecropia latiloba, Guarea macrophylla, Socratea exorrhiza) were set out in Amazon unlogged terra firme forest, in Amazon selectively-logged terra firme forest, in Amazon palm forest, and in Amazon white sand forest either on top of or beneath the litter layer, and after two weeks scored for seeds taken by predators, seeds destroyed by pathogens and seeds that germinated.
Results: I found both terra firme forests (unlogged and selectively-logged) lost most of their seed to predators and the least of their seed to pathogens, white sand forests lost the least of their seed to predators and the most of their seed to pathogens, and the fewest seeds germinated in both terra firme forests and in palm forest. More specifically (1) within unlogged terra firme forest addition of litter reduced seed predation but increased seed losses to pathogens and germination, and C. latiloba lost the most seeds to pathogens, (2) within selectively-logged terra firme forest seeds showed the same trends as unlogged terra firme forest but without significant effects, (3) within palm forest addition of litter reduced predation but increased losses to pathogens, and S. exorrhiza lost the least seeds to pathogens, and (4) within white sand forests addition of litter increased germination. Combining the results from all forests together, predators took most of the seeds, pathogens took most of the seeds that escaped predation, and most of the seeds that survived predation and pathogens germinated.
Conclusion: While such large losses of tree seed to predators and pathogens in these unflooded forests suggest limited recruitment, the variation demonstrated in these field experiments – among forest-types, among tree species, between litter situations on the forest floor – help to insure that recruitment does occur and that these unflooded forests continue to dominate the Amazon basin.
期刊介绍:
The New Zealand Journal of Forestry Science is an international journal covering the breadth of forestry science. Planted forests are a particular focus but manuscripts on a wide range of forestry topics will also be considered. The journal''s scope covers forestry species, which are those capable of reaching at least five metres in height at maturity in the place they are located, but not grown or managed primarily for fruit or nut production.