{"title":"DYNAMICS OF THE SYSTEM DRILLING RISER-BOP-WELL CASING – WELLHEAD-CASING FATIGUE ANALYSIS","authors":"Fabiano Guimarães","doi":"10.1115/1.4063011","DOIUrl":null,"url":null,"abstract":"\n This paper presents a fully coupled solution in the time-domain, using the finite-differences method to the system of equations that model the dynamic behavior of the riser, blow out preventer and casing strings, when connected for well drilling/completion – the model is suitable to evaluate wellhead fatigue, even when the amplitude of oscillation and accelerations of the BOP are high. Sensibility analysis is used to show the effect of changing the Riser Top Tension to the resulting maximum values of wellhead bending moment and casing stress ranges. For the case where the rig is oscillating around a fixed position and there is no current, using a regular wave, the results show that there are some wave periods for which an increase in the Riser Top Tension reduces the maximum wellhead bending moment and the max casing stress range, therefore increasing fatigue life of the casing and wellhead. The effects of varying the weight of the BOP and soil parameters and the effect of the phase difference between the wave and first order vessel motion are analyzed. The proposed solution can also be used to perform riser and casing analysis during drift-off/drive-off.","PeriodicalId":50106,"journal":{"name":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4063011","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a fully coupled solution in the time-domain, using the finite-differences method to the system of equations that model the dynamic behavior of the riser, blow out preventer and casing strings, when connected for well drilling/completion – the model is suitable to evaluate wellhead fatigue, even when the amplitude of oscillation and accelerations of the BOP are high. Sensibility analysis is used to show the effect of changing the Riser Top Tension to the resulting maximum values of wellhead bending moment and casing stress ranges. For the case where the rig is oscillating around a fixed position and there is no current, using a regular wave, the results show that there are some wave periods for which an increase in the Riser Top Tension reduces the maximum wellhead bending moment and the max casing stress range, therefore increasing fatigue life of the casing and wellhead. The effects of varying the weight of the BOP and soil parameters and the effect of the phase difference between the wave and first order vessel motion are analyzed. The proposed solution can also be used to perform riser and casing analysis during drift-off/drive-off.
期刊介绍:
The Journal of Offshore Mechanics and Arctic Engineering is an international resource for original peer-reviewed research that advances the state of knowledge on all aspects of analysis, design, and technology development in ocean, offshore, arctic, and related fields. Its main goals are to provide a forum for timely and in-depth exchanges of scientific and technical information among researchers and engineers. It emphasizes fundamental research and development studies as well as review articles that offer either retrospective perspectives on well-established topics or exposures to innovative or novel developments. Case histories are not encouraged. The journal also documents significant developments in related fields and major accomplishments of renowned scientists by programming themed issues to record such events.
Scope: Offshore Mechanics, Drilling Technology, Fixed and Floating Production Systems; Ocean Engineering, Hydrodynamics, and Ship Motions; Ocean Climate Statistics, Storms, Extremes, and Hurricanes; Structural Mechanics; Safety, Reliability, Risk Assessment, and Uncertainty Quantification; Riser Mechanics, Cable and Mooring Dynamics, Pipeline and Subsea Technology; Materials Engineering, Fatigue, Fracture, Welding Technology, Non-destructive Testing, Inspection Technologies, Corrosion Protection and Control; Fluid-structure Interaction, Computational Fluid Dynamics, Flow and Vortex-Induced Vibrations; Marine and Offshore Geotechnics, Soil Mechanics, Soil-pipeline Interaction; Ocean Renewable Energy; Ocean Space Utilization and Aquaculture Engineering; Petroleum Technology; Polar and Arctic Science and Technology, Ice Mechanics, Arctic Drilling and Exploration, Arctic Structures, Ice-structure and Ship Interaction, Permafrost Engineering, Arctic and Thermal Design.