{"title":"Upper Bounds on the Smallest Positive Eigenvalue of Trees","authors":"Sonu Rani, Sasmita Barik","doi":"10.1007/s00026-022-00619-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we undertake the problem of finding the first four trees on a fixed number of vertices with the maximum smallest positive eigenvalue. Let <span>\\({\\mathcal {T}}_{n,d}\\)</span> denote the class of trees on <i>n</i> vertices with diameter <i>d</i>. First, we obtain the bounds on the smallest positive eigenvalue of trees in <span>\\({\\mathcal {T}}_{n,d}\\)</span> for <span>\\(d =2,3,4\\)</span> and then upper bounds on the smallest positive eigenvalue of trees are obtained in general class of all trees on <i>n</i> vertices. Finally, the first four trees on <i>n</i> vertices with the maximum, second maximum, third maximum and fourth maximum smallest positive eigenvalue are characterized.</p></div>","PeriodicalId":50769,"journal":{"name":"Annals of Combinatorics","volume":"27 1","pages":"19 - 29"},"PeriodicalIF":0.6000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00026-022-00619-x.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00026-022-00619-x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
In this article, we undertake the problem of finding the first four trees on a fixed number of vertices with the maximum smallest positive eigenvalue. Let \({\mathcal {T}}_{n,d}\) denote the class of trees on n vertices with diameter d. First, we obtain the bounds on the smallest positive eigenvalue of trees in \({\mathcal {T}}_{n,d}\) for \(d =2,3,4\) and then upper bounds on the smallest positive eigenvalue of trees are obtained in general class of all trees on n vertices. Finally, the first four trees on n vertices with the maximum, second maximum, third maximum and fourth maximum smallest positive eigenvalue are characterized.
期刊介绍:
Annals of Combinatorics publishes outstanding contributions to combinatorics with a particular focus on algebraic and analytic combinatorics, as well as the areas of graph and matroid theory. Special regard will be given to new developments and topics of current interest to the community represented by our editorial board.
The scope of Annals of Combinatorics is covered by the following three tracks:
Algebraic Combinatorics:
Enumerative combinatorics, symmetric functions, Schubert calculus / Combinatorial Hopf algebras, cluster algebras, Lie algebras, root systems, Coxeter groups / Discrete geometry, tropical geometry / Discrete dynamical systems / Posets and lattices
Analytic and Algorithmic Combinatorics:
Asymptotic analysis of counting sequences / Bijective combinatorics / Univariate and multivariable singularity analysis / Combinatorics and differential equations / Resolution of hard combinatorial problems by making essential use of computers / Advanced methods for evaluating counting sequences or combinatorial constants / Complexity and decidability aspects of combinatorial sequences / Combinatorial aspects of the analysis of algorithms
Graphs and Matroids:
Structural graph theory, graph minors, graph sparsity, decompositions and colorings / Planar graphs and topological graph theory, geometric representations of graphs / Directed graphs, posets / Metric graph theory / Spectral and algebraic graph theory / Random graphs, extremal graph theory / Matroids, oriented matroids, matroid minors / Algorithmic approaches