Biodiesel Synthesis From Waste Cooking Oil Using CaO.SrO Catalyst By Transesterification Reaction In Batch Reactor

N. Widiarti, I. Haq, F. W. Mahatmanti, Harjito Harjito, Cepi Kurniawan, S. Suprapto, D. Prasetyoko
{"title":"Biodiesel Synthesis From Waste Cooking Oil Using CaO.SrO Catalyst By Transesterification Reaction In Batch Reactor","authors":"N. Widiarti, I. Haq, F. W. Mahatmanti, Harjito Harjito, Cepi Kurniawan, S. Suprapto, D. Prasetyoko","doi":"10.15294/JBAT.V7I2.14925","DOIUrl":null,"url":null,"abstract":"CaO is a very good catalyst for oil transesterification reactions into biodiesel, but requires a reaction time of 2 hours to obtain equilibrium. The time of CaO catalysis reaction can be accelerated by modifying the CaO catalyst with SrO. Synthesis biodiesel of waste cooking oil has been successfully conducted by transesterification reaction that used batch reactor assisted by CaO.SrO catalyst. The aim of this study is to determine the characteristics and catalytic activity of catalyst in the transesterification reaction. Catalysts have been successfully synthesized by coprecipitation method with oil to methanol molar ratio of 1:1, and its calcined at 800oC for 3 hours. Catalyst was characterized by XRD to determine the crystallinity. The smaller catalyst crystallinity obtained as the decline in intensity and shifts diffraction angles of CaO modified SrO catalyst. Surface area of catalyst characterized by SAA, that allow surface area between CaO modified SrO by 10.217 m2/g. Transesterification reaction performed on variation time (30, 60, 90, 120, 150 minutes), and the catalysts amount (1, 2, 4, 6, 8% w/v). The optimum condition of catalytic activity in reaction for 2 hours and the catalyst amount is 1% w/v of reactants that produce yield of biodiesel is 96.4%.","PeriodicalId":17764,"journal":{"name":"Jurnal Bahan Alam Terbarukan","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Bahan Alam Terbarukan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15294/JBAT.V7I2.14925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

CaO is a very good catalyst for oil transesterification reactions into biodiesel, but requires a reaction time of 2 hours to obtain equilibrium. The time of CaO catalysis reaction can be accelerated by modifying the CaO catalyst with SrO. Synthesis biodiesel of waste cooking oil has been successfully conducted by transesterification reaction that used batch reactor assisted by CaO.SrO catalyst. The aim of this study is to determine the characteristics and catalytic activity of catalyst in the transesterification reaction. Catalysts have been successfully synthesized by coprecipitation method with oil to methanol molar ratio of 1:1, and its calcined at 800oC for 3 hours. Catalyst was characterized by XRD to determine the crystallinity. The smaller catalyst crystallinity obtained as the decline in intensity and shifts diffraction angles of CaO modified SrO catalyst. Surface area of catalyst characterized by SAA, that allow surface area between CaO modified SrO by 10.217 m2/g. Transesterification reaction performed on variation time (30, 60, 90, 120, 150 minutes), and the catalysts amount (1, 2, 4, 6, 8% w/v). The optimum condition of catalytic activity in reaction for 2 hours and the catalyst amount is 1% w/v of reactants that produce yield of biodiesel is 96.4%.
CaO.SrO催化剂在间歇式反应器中酯化反应合成生物柴油
CaO是油酯交换反应生成生物柴油的非常好的催化剂,但需要2小时的反应时间才能达到平衡。用SrO改性CaO催化剂可以加快CaO催化反应的时间。采用间歇式反应器,在CaO·SrO催化剂的辅助下,通过酯交换反应成功地合成了废弃食用油生物柴油。本研究的目的是确定催化剂在酯交换反应中的特性和催化活性。采用共沉淀法成功合成了油甲醇摩尔比为1:1的催化剂,并在800℃下煅烧3小时。用XRD对催化剂进行了表征,测定了催化剂的结晶度。随着CaO改性的SrO催化剂的强度和衍射角的变化,获得的催化剂结晶度越小。以SAA为特征的催化剂的表面积,其允许CaO改性的SrO之间的表面积为10.217m2/g。酯交换反应在变化时间(30、60、90、120、150分钟)和催化剂量(1、2、4、6、8%w/v)下进行。在反应2小时,催化剂用量为1%w/v的条件下,生物柴油的产率为96.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信