Sufficient ensemble size for random matrix theory-based handling of singular covariance matrices

IF 2 2区 数学 Q1 MATHEMATICS
A. Kabán
{"title":"Sufficient ensemble size for random matrix theory-based handling of singular covariance matrices","authors":"A. Kabán","doi":"10.1142/s0219530520400072","DOIUrl":null,"url":null,"abstract":"Singular covariance matrices are frequently encountered in both machine learning and optimization problems, most commonly due to high dimensionality of data and insufficient sample sizes. Among many methods of regularization, here we focus on a relatively recent random matrix-theoretic approach, the idea of which is to create well-conditioned approximations of a singular covariance matrix and its inverse by taking the expectation of its random projections. We are interested in the error of a Monte Carlo implementation of this approach, which allows subsequent parallel processing in low dimensions in practice. We find that [Formula: see text] random projections, where [Formula: see text] is the size of the original matrix, are sufficient for the Monte Carlo error to become negligible, in the sense of expected spectral norm difference, for both covariance and inverse covariance approximation, in the latter case under mild assumptions.","PeriodicalId":55519,"journal":{"name":"Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/s0219530520400072","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219530520400072","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Singular covariance matrices are frequently encountered in both machine learning and optimization problems, most commonly due to high dimensionality of data and insufficient sample sizes. Among many methods of regularization, here we focus on a relatively recent random matrix-theoretic approach, the idea of which is to create well-conditioned approximations of a singular covariance matrix and its inverse by taking the expectation of its random projections. We are interested in the error of a Monte Carlo implementation of this approach, which allows subsequent parallel processing in low dimensions in practice. We find that [Formula: see text] random projections, where [Formula: see text] is the size of the original matrix, are sufficient for the Monte Carlo error to become negligible, in the sense of expected spectral norm difference, for both covariance and inverse covariance approximation, in the latter case under mild assumptions.
基于随机矩阵理论处理奇异协方差矩阵的充分集成大小
奇异协方差矩阵在机器学习和优化问题中都经常遇到,最常见的原因是数据的高维性和样本量不足。在许多正则化方法中,我们关注的是一种相对较新的随机矩阵理论方法,其思想是通过对奇异协方差矩阵及其逆矩阵的随机投影的期望来创建其良好条件的近似。我们对这种方法的蒙特卡罗实现的错误感兴趣,这种方法允许在实践中以低维进行后续并行处理。我们发现,[公式:见正文]随机投影,其中[公式:看正文]是原始矩阵的大小,在温和假设下,对于协方差和逆协方差近似,在预期谱范数差的意义上,足以使蒙特卡洛误差变得可忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
4.50%
发文量
29
审稿时长
>12 weeks
期刊介绍: Analysis and Applications publishes high quality mathematical papers that treat those parts of analysis which have direct or potential applications to the physical and biological sciences and engineering. Some of the topics from analysis include approximation theory, asymptotic analysis, calculus of variations, integral equations, integral transforms, ordinary and partial differential equations, delay differential equations, and perturbation methods. The primary aim of the journal is to encourage the development of new techniques and results in applied analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信