Robust Object Tracking in Infrared Video via Particle Filters

Q4 Computer Science
E. Comas, Adrián Stacul, C. Delrieux
{"title":"Robust Object Tracking in Infrared Video via Particle Filters","authors":"E. Comas, Adrián Stacul, C. Delrieux","doi":"10.5565/REV/ELCVIA.1185","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the effectiveness of particle filters for object tracking in infrared videos. Once the user identifies the target object to be followed in position and size, its most representative feature points are obtained by means of the SURF algorithm. A particle filter is initialized with these feature points, and the location of the object within the video frames is determined by the average value of the particles that have a greater similarity with the target. Two different field tests were carried out to study the filter behaviour in comparison with previously used methods in the bibliography. The first one was tracking an unmanned aerial vehicle (UAV) in the open. The second one was to identify a heliport in a noisy infrared zenithal video take. In the first test, the UAV was followed by another positioning system simultaneously, thus allowing the comparison of both systems, and the evaluation in the improvement introduced by the particle algorithm.","PeriodicalId":38711,"journal":{"name":"Electronic Letters on Computer Vision and Image Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Letters on Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/REV/ELCVIA.1185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we investigate the effectiveness of particle filters for object tracking in infrared videos. Once the user identifies the target object to be followed in position and size, its most representative feature points are obtained by means of the SURF algorithm. A particle filter is initialized with these feature points, and the location of the object within the video frames is determined by the average value of the particles that have a greater similarity with the target. Two different field tests were carried out to study the filter behaviour in comparison with previously used methods in the bibliography. The first one was tracking an unmanned aerial vehicle (UAV) in the open. The second one was to identify a heliport in a noisy infrared zenithal video take. In the first test, the UAV was followed by another positioning system simultaneously, thus allowing the comparison of both systems, and the evaluation in the improvement introduced by the particle algorithm.
基于粒子滤波器的红外视频鲁棒目标跟踪
本文研究了粒子滤波器在红外视频目标跟踪中的有效性。一旦用户识别出要在位置和大小上跟随的目标对象,就通过SURF算法获得其最具代表性的特征点。粒子滤波器用这些特征点初始化,并且对象在视频帧内的位置由与目标具有更大相似性的粒子的平均值确定。进行了两种不同的现场测试,以与参考文献中以前使用的方法进行比较,研究过滤行为。第一次是在野外跟踪一架无人机。第二个是在嘈杂的红外天顶视频拍摄中识别一个直升机场。在第一次测试中,无人机后面同时有另一个定位系统,从而可以对两个系统进行比较,并对粒子算法引入的改进进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Letters on Computer Vision and Image Analysis
Electronic Letters on Computer Vision and Image Analysis Computer Science-Computer Vision and Pattern Recognition
CiteScore
2.50
自引率
0.00%
发文量
19
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信