Engineering mesoporous silica for superior optical and thermal properties

IF 3.3 Q3 ENERGY & FUELS
Danielle M. Butts, Patricia E. McNeil, Michal Marszewski, E. Lan, Tiphaine Galy, Man Li, J. Kang, David S. Ashby, Sophia C King, S. Tolbert, Yongjie Hu, L. Pilon, B. Dunn
{"title":"Engineering mesoporous silica for superior optical and thermal properties","authors":"Danielle M. Butts, Patricia E. McNeil, Michal Marszewski, E. Lan, Tiphaine Galy, Man Li, J. Kang, David S. Ashby, Sophia C King, S. Tolbert, Yongjie Hu, L. Pilon, B. Dunn","doi":"10.1557/mre.2020.40","DOIUrl":null,"url":null,"abstract":"We report a significant advance in thermally insulating transparent materials: silica-based monoliths with controlled porosity which exhibit the transparency of windows in combination with a thermal conductivity comparable to aerogels. The lack of transparent, thermally insulating windows leads to substantial heat loss in commercial and residential buildings, which accounts for ~4.2% of primary US energy consumption annually. The present study provides a potential solution to this problem by demonstrating that ambiently dried silica aerogel monoliths, i.e., ambigels, can simultaneously achieve high optical transparency and low thermal conductivity without supercritical drying. A combination of tetraethoxysilane, methyltriethoxysilane, and post-gelation surface modification precursors were used to synthesize ambiently dried materials with varying pore fractions and pore sizes. By controlling the synthesis and processing conditions, 0.5–3 mm thick mesoporous monoliths with transmittance >95% and a thermal conductivity of 0.04 W/(m K) were produced. A narrow pore size distribution, <15 nm, led to the excellent transparency and low haze, while porosity in excess of 80% resulted in low thermal conductivity. A thermal transport model considering fractal dimension and phonon-boundary scattering is proposed to explain the low effective thermal conductivity measured. This work offers new insights into the design of transparent, energy saving windows.","PeriodicalId":44802,"journal":{"name":"MRS Energy & Sustainability","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Energy & Sustainability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1557/mre.2020.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 8

Abstract

We report a significant advance in thermally insulating transparent materials: silica-based monoliths with controlled porosity which exhibit the transparency of windows in combination with a thermal conductivity comparable to aerogels. The lack of transparent, thermally insulating windows leads to substantial heat loss in commercial and residential buildings, which accounts for ~4.2% of primary US energy consumption annually. The present study provides a potential solution to this problem by demonstrating that ambiently dried silica aerogel monoliths, i.e., ambigels, can simultaneously achieve high optical transparency and low thermal conductivity without supercritical drying. A combination of tetraethoxysilane, methyltriethoxysilane, and post-gelation surface modification precursors were used to synthesize ambiently dried materials with varying pore fractions and pore sizes. By controlling the synthesis and processing conditions, 0.5–3 mm thick mesoporous monoliths with transmittance >95% and a thermal conductivity of 0.04 W/(m K) were produced. A narrow pore size distribution, <15 nm, led to the excellent transparency and low haze, while porosity in excess of 80% resulted in low thermal conductivity. A thermal transport model considering fractal dimension and phonon-boundary scattering is proposed to explain the low effective thermal conductivity measured. This work offers new insights into the design of transparent, energy saving windows.
工程介孔二氧化硅优越的光学和热性能
我们报道了隔热透明材料的重大进展:具有可控孔隙率的二氧化硅基单片,其表现出窗口的透明度和与气凝胶相当的热导率。由于缺乏透明隔热窗户,商业和住宅建筑的热损失很大,每年约占美国一次能源消耗的4.2%。本研究为这个问题提供了一个潜在的解决方案,证明了环境干燥的二氧化硅气凝胶单片,即环境凝胶,可以在不进行超临界干燥的情况下同时实现高光学透明度和低导热性。四乙氧基硅烷、甲基三乙氧基硅烷和凝胶化后表面改性前体的组合用于合成具有不同孔隙分数和孔径的环境干燥材料。通过控制合成和加工条件,制备了厚度为0.5–3 mm、透射率>95%、热导率为0.04 W/(m K)的中孔单体。孔径分布窄,<15nm,导致优异的透明度和低雾度,而孔隙率超过80%导致低热导率。提出了一个考虑分形维数和声子边界散射的热输运模型来解释测量的低有效热导率。这项工作为透明节能窗户的设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MRS Energy & Sustainability
MRS Energy & Sustainability ENERGY & FUELS-
CiteScore
6.40
自引率
2.30%
发文量
36
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信