Pressure-correction projection method for modelling the incompressible fluid flow in porous media

Pub Date : 2023-08-01 DOI:10.1515/rnam-2023-0019
K. Terekhov
{"title":"Pressure-correction projection method for modelling the incompressible fluid flow in porous media","authors":"K. Terekhov","doi":"10.1515/rnam-2023-0019","DOIUrl":null,"url":null,"abstract":"Abstract This work is dedicated to the pressure-correction projection method for the volume-averaged Navier–Stokes system for porous media. A set of parameters controlling the presence of inertia and viscosity is introduced into the system. Switching parameters allows us to reduce the system to either the Brinkman system or the Darcy equation. Considering the jump in the parameters between mesh cells allows capturing the contact of media of different types, such as free-flow and porous media flow. We apply Chorin’s projection method to decouple the system. The splitting of the system yields a momentum conservation equation and an anisotropic pressure correction equation. We propose a combination of collocated finite-volume methods to solve the problem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/rnam-2023-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This work is dedicated to the pressure-correction projection method for the volume-averaged Navier–Stokes system for porous media. A set of parameters controlling the presence of inertia and viscosity is introduced into the system. Switching parameters allows us to reduce the system to either the Brinkman system or the Darcy equation. Considering the jump in the parameters between mesh cells allows capturing the contact of media of different types, such as free-flow and porous media flow. We apply Chorin’s projection method to decouple the system. The splitting of the system yields a momentum conservation equation and an anisotropic pressure correction equation. We propose a combination of collocated finite-volume methods to solve the problem.
分享
查看原文
多孔介质中不可压缩流体流动模型的压力修正投影法
摘要这项工作致力于多孔介质体积平均Navier-Stokes系统的压力校正投影方法。在系统中引入了一组控制惯性和粘度存在的参数。通过切换参数,我们可以将系统简化为Brinkman系统或Darcy方程。考虑到网格单元之间参数的跳跃,可以捕捉不同类型介质的接触,如自由流和多孔介质流。我们应用Chorin的投影方法对系统进行解耦。系统的分裂产生了动量守恒方程和各向异性压力校正方程。我们提出了一种并置有限体积方法的组合来解决这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信