Microbial Simultaneous Eradication from Wastewater of Sulphate and Heavy Metals

IF 0.4 Q4 ENVIRONMENTAL SCIENCES
Haider A.J. Almuslamawy, Ahmed Hussein Ali Aldhrub, S. Ahmed, Raghad S. Mouhamad
{"title":"Microbial Simultaneous Eradication from Wastewater of Sulphate and Heavy Metals","authors":"Haider A.J. Almuslamawy, Ahmed Hussein Ali Aldhrub, S. Ahmed, Raghad S. Mouhamad","doi":"10.3233/ajw230041","DOIUrl":null,"url":null,"abstract":"Hazardous materials, heavy metals, and organic toxins released into the environment have caused considerable harm to microbes, plants, animals, and humans. Wastewater is one of the most contaminated ecosystems due to heavy metals emitted mostly by human activity. Bioremediation of wastewater is an ecologically acceptable and cost-effective method of removing heavy metals from sewage; the general purpose of this study is to analyse the dependability of anaerobic sludge biomass in removing sulfur compounds and heavy metals from waste water. The anaerobic sludge biomass evaluated in this work was taken from a wastewater treatment plant (WWTP) in Al-Rustumiya, Baghdad, and grown in the mineral medium for anaerobic growth. In serum bottles, batch metal removal tests were conducted concurrently with sulphate reduction. The biomass increased from the time of inoculation medium with 20 mg·L-1 (t = 0 day, MLVSS = 688 29 mg·L-1) to the 8th day, when it reached the highest value (MLVSS = 980 48 mg·L-1); more than 90% removal was observed for copper and nickel, almost 80% for lead and cadmium metals, and less than 80% removal for chrome and zinc. In addition, in the case of lead, copper, and nickel, sulphate removal was greater than 50%. Except zinc, all metals have the capacity to remove more than 60% of the COD.","PeriodicalId":8553,"journal":{"name":"Asian Journal of Water, Environment and Pollution","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Water, Environment and Pollution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ajw230041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Hazardous materials, heavy metals, and organic toxins released into the environment have caused considerable harm to microbes, plants, animals, and humans. Wastewater is one of the most contaminated ecosystems due to heavy metals emitted mostly by human activity. Bioremediation of wastewater is an ecologically acceptable and cost-effective method of removing heavy metals from sewage; the general purpose of this study is to analyse the dependability of anaerobic sludge biomass in removing sulfur compounds and heavy metals from waste water. The anaerobic sludge biomass evaluated in this work was taken from a wastewater treatment plant (WWTP) in Al-Rustumiya, Baghdad, and grown in the mineral medium for anaerobic growth. In serum bottles, batch metal removal tests were conducted concurrently with sulphate reduction. The biomass increased from the time of inoculation medium with 20 mg·L-1 (t = 0 day, MLVSS = 688 29 mg·L-1) to the 8th day, when it reached the highest value (MLVSS = 980 48 mg·L-1); more than 90% removal was observed for copper and nickel, almost 80% for lead and cadmium metals, and less than 80% removal for chrome and zinc. In addition, in the case of lead, copper, and nickel, sulphate removal was greater than 50%. Except zinc, all metals have the capacity to remove more than 60% of the COD.
微生物同时清除废水中的硫酸盐和重金属
释放到环境中的有害物质、重金属和有机毒素对微生物、植物、动物和人类造成了相当大的危害。废水是污染最严重的生态系统之一,因为重金属主要由人类活动排放。废水生物修复是从污水中去除重金属的一种生态上可接受且具有成本效益的方法;本研究的主要目的是分析厌氧污泥生物量去除污水中含硫化合物和重金属的可靠性。本工作中评估的厌氧污泥生物量取自巴格达Al Rustumiya的废水处理厂(WWTP),并在用于厌氧生长的矿物培养基中生长。在血清瓶中,分批金属去除试验与硫酸盐还原同时进行。生物量从接种20mg·L-1培养基时(t=0天,MLVSS=688 29mg·L-1)到第8天增加,达到最高值(MLVSS=980 48mg·L-1);观察到铜和镍的去除率超过90%,铅和镉的去除率几乎为80%,铬和锌的去除率低于80%。此外,在铅、铜和镍的情况下,硫酸盐的去除率大于50%。除锌外,所有金属都能去除60%以上的COD。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
80
期刊介绍: Asia, as a whole region, faces severe stress on water availability, primarily due to high population density. Many regions of the continent face severe problems of water pollution on local as well as regional scale and these have to be tackled with a pan-Asian approach. However, the available literature on the subject is generally based on research done in Europe and North America. Therefore, there is an urgent and strong need for an Asian journal with its focus on the region and wherein the region specific problems are addressed in an intelligent manner. In Asia, besides water, there are several other issues related to environment, such as; global warming and its impact; intense land/use and shifting pattern of agriculture; issues related to fertilizer applications and pesticide residues in soil and water; and solid and liquid waste management particularly in industrial and urban areas. Asia is also a region with intense mining activities whereby serious environmental problems related to land/use, loss of top soil, water pollution and acid mine drainage are faced by various communities. Essentially, Asians are confronted with environmental problems on many fronts. Many pressing issues in the region interlink various aspects of environmental problems faced by population in this densely habited region in the world. Pollution is one such serious issue for many countries since there are many transnational water bodies that spread the pollutants across the entire region. Water, environment and pollution together constitute a three axial problem that all concerned people in the region would like to focus on.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信