Remarks on the norming sets of ${\mathcal L}(^ml_{1}^n)$ and description of the norming sets of ${\mathcal L}(^3l_{1}^2)$

Q3 Mathematics
Sung Guen Kim
{"title":"Remarks on the norming sets of ${\\mathcal L}(^ml_{1}^n)$ and description of the norming sets of ${\\mathcal L}(^3l_{1}^2)$","authors":"Sung Guen Kim","doi":"10.30970/ms.58.2.201-211","DOIUrl":null,"url":null,"abstract":"Let $n\\in \\mathbb{N}, n\\geq 2.$ An element $x=(x_1, \\ldots, x_n)\\in E^n$ is called a {\\em norming point} of $T\\in {\\mathcal L}(^n E)$ if $\\|x_1\\|=\\cdots=\\|x_n\\|=1$ and$|T(x)|=\\|T\\|,$ where ${\\mathcal L}(^n E)$ denotes the space of all continuous $n$-linear forms on $E.$For $T\\in {\\mathcal L}(^n E)$ we define the {\\em norming set} of $T$ \n\\centerline{$\\qopname\\relax o{Norm}(T)=\\Big\\{(x_1, \\ldots, x_n)\\in E^n: (x_1, \\ldots, x_n)~\\mbox{is a norming point of}~T\\Big\\}.$} \nBy $i=(i_1,i_2,\\ldots,i_m)$ we denote the multi-index. In this paper we show the following: \n\\noi (a) Let $n, m\\geq 2$ and let $l_1^n=\\mathbb{R}^n$ with the $l_1$-norm. Let $T=\\big(a_{i}\\big)_{1\\leq i_k\\leq n}\\in {\\mathcal L}(^ml_{1}^n)$ with $\\|T\\|=1.$Define $S=\\big(b_{i}\\big)_{1\\leq i_k\\leq n}\\in {\\mathcal L}(^n l_1^m)$ be such that $b_{i}=a_{i}$ if$|a_{i}|=1$ and $b_{i}=1$ if$|a_{i}|<1.$ \nLet $A=\\{1, \\ldots, n\\}\\times \\cdots\\times\\{1, \\ldots, n\\}$ and $M=\\{i\\in A: |a_{i}|<1\\}.$Then, \n\\centerline{$\\qopname\\relax o{Norm}(T)=\\bigcup_{(i_1, \\ldots, i_m)\\in M}\\Big\\{\\Big(\\big(t_1^{(1)}, \\ldots, t_{{i_1}-1}^{(1)}, 0, t_{{i_1}+1}^{(1)}, \\ldots, t_{n}^{(1)}\\big), \\big(t_1^{(2)}, \\ldots, t_{n}^{(2)}\\big), \\ldots, \\big(t_1^{(m)}, \\ldots, t_{n}^{(m)}\\big)\\Big),$} \n\\centerline{$\\Big(\\big(t_1^{(1)}, \\ldots, t_{n}^{(1)}\\big), \\big(t_1^{(2)}, \\ldots, t_{{i_2}-1}^{(2)}, 0, t_{{i_2}+1}^{(2)}, \\ldots, t_{n}^{(2)}\\big), \\big(t_1^{(3)}, \\ldots, t_{n}^{(3)}\\big), \\ldots, \\big(t_1^{(m)}, \\ldots, t_{n}^{(m)}\\big)\\Big),\\ldots$} \n\\centerline{$\\ldots, \\Big(\\big(t_1^{(1)}, \\ldots, t_{n}^{(1)}\\big), \\ldots, \\big(t_1^{(m-1)}, \\ldots, t_{n}^{(m-1)}\\big), \\big(t_1^{(m)}, \\ldots, t_{{i_m}-1}^{(m)}, 0, t_{{i_m}+1}^{(m)}, \\ldots, t_{n}^{(m)}\\big)\\Big)\\colon$} \n\\centerline{$ \\Big(\\big(t_1^{(1)}, \\ldots, t_{n}^{(1)}\\big), \\ldots, \\big(t_1^{(m)}, \\ldots, t_{n}^{(m)}\\big)\\Big)\\in \\qopname\\relax o{Norm}(S)\\Big\\}.$} \nThis statement extend the results of [9]. \n\\noi (b) Using the result (a), we describe the norming sets of every $T\\in {\\mathcal L}(^3l_{1}^2).$","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.58.2.201-211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let $n\in \mathbb{N}, n\geq 2.$ An element $x=(x_1, \ldots, x_n)\in E^n$ is called a {\em norming point} of $T\in {\mathcal L}(^n E)$ if $\|x_1\|=\cdots=\|x_n\|=1$ and$|T(x)|=\|T\|,$ where ${\mathcal L}(^n E)$ denotes the space of all continuous $n$-linear forms on $E.$For $T\in {\mathcal L}(^n E)$ we define the {\em norming set} of $T$ \centerline{$\qopname\relax o{Norm}(T)=\Big\{(x_1, \ldots, x_n)\in E^n: (x_1, \ldots, x_n)~\mbox{is a norming point of}~T\Big\}.$} By $i=(i_1,i_2,\ldots,i_m)$ we denote the multi-index. In this paper we show the following: \noi (a) Let $n, m\geq 2$ and let $l_1^n=\mathbb{R}^n$ with the $l_1$-norm. Let $T=\big(a_{i}\big)_{1\leq i_k\leq n}\in {\mathcal L}(^ml_{1}^n)$ with $\|T\|=1.$Define $S=\big(b_{i}\big)_{1\leq i_k\leq n}\in {\mathcal L}(^n l_1^m)$ be such that $b_{i}=a_{i}$ if$|a_{i}|=1$ and $b_{i}=1$ if$|a_{i}|<1.$ Let $A=\{1, \ldots, n\}\times \cdots\times\{1, \ldots, n\}$ and $M=\{i\in A: |a_{i}|<1\}.$Then, \centerline{$\qopname\relax o{Norm}(T)=\bigcup_{(i_1, \ldots, i_m)\in M}\Big\{\Big(\big(t_1^{(1)}, \ldots, t_{{i_1}-1}^{(1)}, 0, t_{{i_1}+1}^{(1)}, \ldots, t_{n}^{(1)}\big), \big(t_1^{(2)}, \ldots, t_{n}^{(2)}\big), \ldots, \big(t_1^{(m)}, \ldots, t_{n}^{(m)}\big)\Big),$} \centerline{$\Big(\big(t_1^{(1)}, \ldots, t_{n}^{(1)}\big), \big(t_1^{(2)}, \ldots, t_{{i_2}-1}^{(2)}, 0, t_{{i_2}+1}^{(2)}, \ldots, t_{n}^{(2)}\big), \big(t_1^{(3)}, \ldots, t_{n}^{(3)}\big), \ldots, \big(t_1^{(m)}, \ldots, t_{n}^{(m)}\big)\Big),\ldots$} \centerline{$\ldots, \Big(\big(t_1^{(1)}, \ldots, t_{n}^{(1)}\big), \ldots, \big(t_1^{(m-1)}, \ldots, t_{n}^{(m-1)}\big), \big(t_1^{(m)}, \ldots, t_{{i_m}-1}^{(m)}, 0, t_{{i_m}+1}^{(m)}, \ldots, t_{n}^{(m)}\big)\Big)\colon$} \centerline{$ \Big(\big(t_1^{(1)}, \ldots, t_{n}^{(1)}\big), \ldots, \big(t_1^{(m)}, \ldots, t_{n}^{(m)}\big)\Big)\in \qopname\relax o{Norm}(S)\Big\}.$} This statement extend the results of [9]. \noi (b) Using the result (a), we describe the norming sets of every $T\in {\mathcal L}(^3l_{1}^2).$
关于${\mathcal L}(^ml_{1}^n)$的赋范集的注释和${\mathcal L}(^3l_{1}^2)$的赋范集的描述
让 $n\in \mathbb{N}, n\geq 2.$ 元素 $x=(x_1, \ldots, x_n)\in E^n$ 叫做a {\em 规范点} 的 $T\in {\mathcal L}(^n E)$ 如果 $\|x_1\|=\cdots=\|x_n\|=1$ 和$|T(x)|=\|T\|,$ 在哪里 ${\mathcal L}(^n E)$ 表示所有连续的空间 $n$-线性形式 $E.$因为 $T\in {\mathcal L}(^n E)$ 我们定义 {\em 规范集} 的 $T$ \centerline{$\qopname\relax o{Norm}(T)=\Big\{(x_1, \ldots, x_n)\in E^n: (x_1, \ldots, x_n)~\mbox{is a norming point of}~T\Big\}.$} By $i=(i_1,i_2,\ldots,i_m)$ 我们表示多指标。在本文中,我们展示了以下内容: \noi (a)让 $n, m\geq 2$ 让 $l_1^n=\mathbb{R}^n$ 和 $l_1$-norm。让 $T=\big(a_{i}\big)_{1\leq i_k\leq n}\in {\mathcal L}(^ml_{1}^n)$ 有 $\|T\|=1.$定义 $S=\big(b_{i}\big)_{1\leq i_k\leq n}\in {\mathcal L}(^n l_1^m)$ 这样 $b_{i}=a_{i}$ 如果$|a_{i}|=1$ 和 $b_{i}=1$ 如果$|a_{i}|<1.$ 让 $A=\{1, \ldots, n\}\times \cdots\times\{1, \ldots, n\}$ 和 $M=\{i\in A: |a_{i}|<1\}.$然后, \centerline{$\qopname\relax o{Norm}(T)=\bigcup_{(i_1, \ldots, i_m)\in M}\Big\{\Big(\big(t_1^{(1)}, \ldots, t_{{i_1}-1}^{(1)}, 0, t_{{i_1}+1}^{(1)}, \ldots, t_{n}^{(1)}\big), \big(t_1^{(2)}, \ldots, t_{n}^{(2)}\big), \ldots, \big(t_1^{(m)}, \ldots, t_{n}^{(m)}\big)\Big),$} \centerline{$\Big(\big(t_1^{(1)}, \ldots, t_{n}^{(1)}\big), \big(t_1^{(2)}, \ldots, t_{{i_2}-1}^{(2)}, 0, t_{{i_2}+1}^{(2)}, \ldots, t_{n}^{(2)}\big), \big(t_1^{(3)}, \ldots, t_{n}^{(3)}\big), \ldots, \big(t_1^{(m)}, \ldots, t_{n}^{(m)}\big)\Big),\ldots$} \centerline{$\ldots, \Big(\big(t_1^{(1)}, \ldots, t_{n}^{(1)}\big), \ldots, \big(t_1^{(m-1)}, \ldots, t_{n}^{(m-1)}\big), \big(t_1^{(m)}, \ldots, t_{{i_m}-1}^{(m)}, 0, t_{{i_m}+1}^{(m)}, \ldots, t_{n}^{(m)}\big)\Big)\colon$} \centerline{$ \Big(\big(t_1^{(1)}, \ldots, t_{n}^{(1)}\big), \ldots, \big(t_1^{(m)}, \ldots, t_{n}^{(m)}\big)\Big)\in \qopname\relax o{Norm}(S)\Big\}.$} 这条语句扩展了[9]的结果。 \noi (b)利用(a)的结果,我们描述了每 $T\in {\mathcal L}(^3l_{1}^2).$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信