A New Numerical Method to Solve Some PDE s in the Unit Ball and Comparison with the Finite Element and the Exact Solution

IF 1.4 Q2 MATHEMATICS, APPLIED
R. Malek, C. Ziti
{"title":"A New Numerical Method to Solve Some \n \n \n PDE\n \n \n s\n \n \n in the Unit Ball and Comparison with the Finite Element and the Exact Solution","authors":"R. Malek, C. Ziti","doi":"10.1155/2021/6696165","DOIUrl":null,"url":null,"abstract":"In this paper, we give a new strategy to extend a numerical approximation method for two-dimensional reaction-diffusion problems. We present numerical results for this type of equations with a known analytical solution to qualify errors for the new method. We compare the results obtained using this approach to the standard finite element approach. +e proposed method is adequate even with the singular right-hand side of type Dirac.","PeriodicalId":55967,"journal":{"name":"International Journal of Differential Equations","volume":"2021 1","pages":"1-15"},"PeriodicalIF":1.4000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/6696165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we give a new strategy to extend a numerical approximation method for two-dimensional reaction-diffusion problems. We present numerical results for this type of equations with a known analytical solution to qualify errors for the new method. We compare the results obtained using this approach to the standard finite element approach. +e proposed method is adequate even with the singular right-hand side of type Dirac.
求解单元球中某些偏微分方程的一种新的数值方法及其与有限元和精确解的比较
本文给出了一种新的策略来扩展二维反应扩散问题的数值逼近方法。我们给出了具有已知解析解的这类方程的数值结果,以限定新方法的误差。我们比较了用这种方法得到的结果与标准有限元方法。本文提出的方法即使对于狄拉克型的奇异右手边也是足够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
20
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信