S. Bortz, J. Hoffman, S. Hofmann, J. García, Kaj Nystrom
{"title":"Coronizations and big pieces in metric spaces","authors":"S. Bortz, J. Hoffman, S. Hofmann, J. García, Kaj Nystrom","doi":"10.5802/aif.3518","DOIUrl":null,"url":null,"abstract":"We prove that coronizations with respect to arbitrary d-regular sets (not necessarily graphs) imply big pieces squared of these (approximating) sets. This is known (and due to David and Semmes in the case of sufficiently large co-dimension, and to Azzam and Schul in general) in the (classical) setting of Euclidean spaces with Hausdorff measure of integer dimension, where the approximating sets are Lipschitz graphs. Our result is a far reaching generalization of these results and we prove that coronizations imply big pieces squared is a generic property. In particular, our result applies, when suitably interpreted, in metric spaces having a fixed positive (perhaps non-integer) dimension, equipped with a Borel regular measure and with arbitrary approximating sets. As a novel application we highlight how to utilize this general setting in the context of parabolic uniform rectifiability.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We prove that coronizations with respect to arbitrary d-regular sets (not necessarily graphs) imply big pieces squared of these (approximating) sets. This is known (and due to David and Semmes in the case of sufficiently large co-dimension, and to Azzam and Schul in general) in the (classical) setting of Euclidean spaces with Hausdorff measure of integer dimension, where the approximating sets are Lipschitz graphs. Our result is a far reaching generalization of these results and we prove that coronizations imply big pieces squared is a generic property. In particular, our result applies, when suitably interpreted, in metric spaces having a fixed positive (perhaps non-integer) dimension, equipped with a Borel regular measure and with arbitrary approximating sets. As a novel application we highlight how to utilize this general setting in the context of parabolic uniform rectifiability.