Minimality of the action on the universal circle of uniform foliations

IF 0.6 3区 数学 Q3 MATHEMATICS
Sérgio R. Fenley, R. Potrie
{"title":"Minimality of the action on the universal circle of uniform foliations","authors":"Sérgio R. Fenley, R. Potrie","doi":"10.4171/ggd/637","DOIUrl":null,"url":null,"abstract":"Given a uniform foliation by Gromov hyperbolic leaves on a $3$-manifold, we show that the action of the fundamental group on the universal circle is minimal and transitive on pairs of different points. We also prove two other results: we prove that general uniform Reebless foliations are $\\mathbb{R}$-covered and we give a new description of the universal circle of $\\mathbb{R}$-covered foliations with Gromov hyperbolic leaves in terms of the JSJ decomposition of $M$.","PeriodicalId":55084,"journal":{"name":"Groups Geometry and Dynamics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Geometry and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ggd/637","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Given a uniform foliation by Gromov hyperbolic leaves on a $3$-manifold, we show that the action of the fundamental group on the universal circle is minimal and transitive on pairs of different points. We also prove two other results: we prove that general uniform Reebless foliations are $\mathbb{R}$-covered and we give a new description of the universal circle of $\mathbb{R}$-covered foliations with Gromov hyperbolic leaves in terms of the JSJ decomposition of $M$.
均匀叶形万向圆上作用的极小性
给出了$3$流形上的Gromov双曲叶的一致叶化,证明了基本群在万圆上的作用在不同点对上是极小的和可传递的。我们还证明了另外两个结果:证明了一般的一致无reeless叶是$\mathbb{R}$-覆盖的,并利用$M$的JSJ分解给出了$\mathbb{R}$-覆盖的具有Gromov双曲叶的叶的普遍圆的新描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: Groups, Geometry, and Dynamics is devoted to publication of research articles that focus on groups or group actions as well as articles in other areas of mathematics in which groups or group actions are used as a main tool. The journal covers all topics of modern group theory with preference given to geometric, asymptotic and combinatorial group theory, dynamics of group actions, probabilistic and analytical methods, interaction with ergodic theory and operator algebras, and other related fields. Topics covered include: geometric group theory; asymptotic group theory; combinatorial group theory; probabilities on groups; computational aspects and complexity; harmonic and functional analysis on groups, free probability; ergodic theory of group actions; cohomology of groups and exotic cohomologies; groups and low-dimensional topology; group actions on trees, buildings, rooted trees.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信