Prediction of carotid atherosclerosis in patients with impaired glucose tolerance - a performance analysis of machine learning techniques

Q3 Business, Management and Accounting
A. Maruthamuthu, M. Punniyamoorthy, S. Paluru, Sindhura Tammuluri
{"title":"Prediction of carotid atherosclerosis in patients with impaired glucose tolerance - a performance analysis of machine learning techniques","authors":"A. Maruthamuthu, M. Punniyamoorthy, S. Paluru, Sindhura Tammuluri","doi":"10.1504/IJENM.2019.10022245","DOIUrl":null,"url":null,"abstract":"The focus of this paper is to examine factors associated with carotid atherosclerosis in patients with impaired glucose tolerance (IGT), and to predict the rapid progression of carotid intima-media thickness (IMT). The proposed machine learning methods performed well and accurately predicted the progression of carotid IMT. The linear support vector machine, nonlinear support vector machine with a radial basis kernel function, multilayer perceptron (MLP), and the Naive Bayes method were employed. A comparison of these methods was conducted using the Brier score, and the accuracy was tested using a confusion matrix.","PeriodicalId":39284,"journal":{"name":"International Journal of Enterprise Network Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Network Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJENM.2019.10022245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

Abstract

The focus of this paper is to examine factors associated with carotid atherosclerosis in patients with impaired glucose tolerance (IGT), and to predict the rapid progression of carotid intima-media thickness (IMT). The proposed machine learning methods performed well and accurately predicted the progression of carotid IMT. The linear support vector machine, nonlinear support vector machine with a radial basis kernel function, multilayer perceptron (MLP), and the Naive Bayes method were employed. A comparison of these methods was conducted using the Brier score, and the accuracy was tested using a confusion matrix.
预测糖耐量受损患者的颈动脉粥样硬化-机器学习技术的性能分析
本文的重点是研究糖耐量受损(IGT)患者颈动脉粥样硬化的相关因素,并预测颈动脉内膜-中膜厚度(IMT)的快速进展。所提出的机器学习方法表现良好,准确预测了颈动脉IMT的进展。采用了线性支持向量机、具有径向基核函数的非线性支持向量机,多层感知器(MLP)和Naive Bayes方法。使用Brier评分对这些方法进行比较,并使用混淆矩阵测试准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Enterprise Network Management
International Journal of Enterprise Network Management Business, Management and Accounting-Management of Technology and Innovation
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信