A. Maruthamuthu, M. Punniyamoorthy, S. Paluru, Sindhura Tammuluri
{"title":"Prediction of carotid atherosclerosis in patients with impaired glucose tolerance - a performance analysis of machine learning techniques","authors":"A. Maruthamuthu, M. Punniyamoorthy, S. Paluru, Sindhura Tammuluri","doi":"10.1504/IJENM.2019.10022245","DOIUrl":null,"url":null,"abstract":"The focus of this paper is to examine factors associated with carotid atherosclerosis in patients with impaired glucose tolerance (IGT), and to predict the rapid progression of carotid intima-media thickness (IMT). The proposed machine learning methods performed well and accurately predicted the progression of carotid IMT. The linear support vector machine, nonlinear support vector machine with a radial basis kernel function, multilayer perceptron (MLP), and the Naive Bayes method were employed. A comparison of these methods was conducted using the Brier score, and the accuracy was tested using a confusion matrix.","PeriodicalId":39284,"journal":{"name":"International Journal of Enterprise Network Management","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Enterprise Network Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJENM.2019.10022245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0
Abstract
The focus of this paper is to examine factors associated with carotid atherosclerosis in patients with impaired glucose tolerance (IGT), and to predict the rapid progression of carotid intima-media thickness (IMT). The proposed machine learning methods performed well and accurately predicted the progression of carotid IMT. The linear support vector machine, nonlinear support vector machine with a radial basis kernel function, multilayer perceptron (MLP), and the Naive Bayes method were employed. A comparison of these methods was conducted using the Brier score, and the accuracy was tested using a confusion matrix.