Data Mining Applied in Food Trade Network

A. Massaro, G. Dipierro, A. Saponaro, A. Galiano
{"title":"Data Mining Applied in Food Trade Network","authors":"A. Massaro, G. Dipierro, A. Saponaro, A. Galiano","doi":"10.5121/ijaia.2020.11202","DOIUrl":null,"url":null,"abstract":"The proposed study deals with the design and the development of a Decision Support System (DSS) platform suitable for the global distribution system (GDS). Precisely, the prototype platform combines artificial intelligence and data mining algorithms to process data collected into a Cassandra Big Data system. In the first part of the paper platform architectures together with all the adopted frameworks including Key Performance Indicators (KPIs) definitions and risk mapping design have been discussed. In the second part data mining algorithms have been applied in order to predict main KPIs. The adopted artificial neural networks architectures are Long Short-Term Memory (LSTM), standard Recurrent Neural Network (RNN) and Gated Recurrent Units (GRU). A dataset with KPIs has been generated in order to test the algorithms. All performed algorithms show a good matching with the generated dataset, thus proving to be the correct approach to predict KPIs. The best performances in terms of Accuracy and Loss are reached by using the standard RNN. The proposed platform represents a solution to increase the Knowledge Base (KB) for a strategic marketing and advanced business intelligence operations.","PeriodicalId":93188,"journal":{"name":"International journal of artificial intelligence & applications","volume":"11 1","pages":"15-35"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5121/ijaia.2020.11202","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of artificial intelligence & applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/ijaia.2020.11202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The proposed study deals with the design and the development of a Decision Support System (DSS) platform suitable for the global distribution system (GDS). Precisely, the prototype platform combines artificial intelligence and data mining algorithms to process data collected into a Cassandra Big Data system. In the first part of the paper platform architectures together with all the adopted frameworks including Key Performance Indicators (KPIs) definitions and risk mapping design have been discussed. In the second part data mining algorithms have been applied in order to predict main KPIs. The adopted artificial neural networks architectures are Long Short-Term Memory (LSTM), standard Recurrent Neural Network (RNN) and Gated Recurrent Units (GRU). A dataset with KPIs has been generated in order to test the algorithms. All performed algorithms show a good matching with the generated dataset, thus proving to be the correct approach to predict KPIs. The best performances in terms of Accuracy and Loss are reached by using the standard RNN. The proposed platform represents a solution to increase the Knowledge Base (KB) for a strategic marketing and advanced business intelligence operations.
数据挖掘在食品贸易网络中的应用
所提出的研究涉及适用于全球分销系统(GDS)的决策支持系统(DSS)平台的设计和开发。确切地说,原型平台结合了人工智能和数据挖掘算法,将收集到的数据处理到Cassandra大数据系统中。在论文的第一部分中,讨论了平台架构以及所有采用的框架,包括关键性能指标(KPI)定义和风险映射设计。在第二部分中,应用了数据挖掘算法来预测主要KPI。采用的人工神经网络架构有长短期记忆(LSTM)、标准递归神经网络(RNN)和门控递归单元(GRU)。为了测试算法,已经生成了一个包含KPI的数据集。所有执行的算法都显示出与生成的数据集的良好匹配,因此被证明是预测KPI的正确方法。使用标准RNN可以达到精度和损耗方面的最佳性能。所提出的平台代表了一种增加战略营销和高级商业智能运营知识库的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信