Self-aligning behaviour of a passively yawing floating offshore wind turbine

IF 1.4 Q3 ENGINEERING, MARINE
S. Netzband, C. Schulz, M. Abdel‐Maksoud
{"title":"Self-aligning behaviour of a passively yawing floating offshore wind turbine","authors":"S. Netzband, C. Schulz, M. Abdel‐Maksoud","doi":"10.1080/09377255.2018.1555986","DOIUrl":null,"url":null,"abstract":"ABSTRACT Floating offshore wind turbines are a promising concept for expanding offshore wind energy. In comparison with fix-founded offshore wind turbines, the overall costs are less dependent on water depths, which leads to a variety of potential locations and markets worldwide. Furthermore, floating platforms allow for new structural designs with the potential to save material and installation costs. In this paper, a self-aligning platform equipped with a 6 MW turbine is presented. The platform is moored on a single point and uses a turret buoy to be able to rotate freely around its anchor point. A downwind rotor and an airfoil-shaped tower induce self-aligning turning moments to passively follow changes of the wind direction. The first order boundary element method panMARE is used to simulate the motion behaviour considering aerodynamic, hydrodynamic and mooring loads. The self-aligning capability is demonstrated under partial turbine load for steady and dynamic conditions with waves and current.","PeriodicalId":51883,"journal":{"name":"Ship Technology Research","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09377255.2018.1555986","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ship Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09377255.2018.1555986","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 9

Abstract

ABSTRACT Floating offshore wind turbines are a promising concept for expanding offshore wind energy. In comparison with fix-founded offshore wind turbines, the overall costs are less dependent on water depths, which leads to a variety of potential locations and markets worldwide. Furthermore, floating platforms allow for new structural designs with the potential to save material and installation costs. In this paper, a self-aligning platform equipped with a 6 MW turbine is presented. The platform is moored on a single point and uses a turret buoy to be able to rotate freely around its anchor point. A downwind rotor and an airfoil-shaped tower induce self-aligning turning moments to passively follow changes of the wind direction. The first order boundary element method panMARE is used to simulate the motion behaviour considering aerodynamic, hydrodynamic and mooring loads. The self-aligning capability is demonstrated under partial turbine load for steady and dynamic conditions with waves and current.
被动偏航浮动海上风力涡轮机的自对准行为
浮动式海上风力涡轮机是拓展海上风能的一个很有前途的概念。与固定式海上风力涡轮机相比,总体成本对水深的依赖性较小,这导致了全球范围内的各种潜在地点和市场。此外,浮动平台允许新的结构设计,有可能节省材料和安装成本。本文介绍了一种配备6MW汽轮机的自对准平台。该平台系泊在一个点上,并使用转塔浮标,以便能够围绕其锚点自由旋转。顺风旋翼和翼型塔架诱导自对准转动力矩,被动地跟随风向的变化。一阶边界元法panMARE用于模拟考虑空气动力学、水动力和系泊载荷的运动行为。在波浪和水流的稳定和动态条件下,在部分涡轮机负载下证明了自对准能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ship Technology Research
Ship Technology Research ENGINEERING, MARINE-
CiteScore
4.90
自引率
4.50%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信