Usha Vengatakrishnan, K. Subramanian, Vettumperumal Rajapand, Dhineshbabu Nattanmai Raman
{"title":"Effect of Ultraviolet and Solar Radiation on Photocatalytic Dye (Black-E and Congo Red) Degradation Using Copper Oxide Nanostructure Particles","authors":"Usha Vengatakrishnan, K. Subramanian, Vettumperumal Rajapand, Dhineshbabu Nattanmai Raman","doi":"10.22068/IJMSE.2145","DOIUrl":null,"url":null,"abstract":"Copper oxide (CuO) nanostructure particles were prepared using KOH/NaOH catalyst by low cost precipitation method and characterized by powder X-ray diffraction (PXRD), scanning electron microscope (SEM) and energy dispersive X-ray spectra (EDX) analysis. The photocatalytic dye degradation study of pure CuO nanostructure particles are analysed against two azo dyes (Direct black 38 (Black-E) and Congo red) under ultraviolet (UV) and solar irradiation. The release of major active species (*OH) in the photocatalytic degradation by as prepared CuO nanostructure particles were investigated by photoluminescence (PL) spectra with two different excitation wavelength (325 and 355nm). The band gap of CuO nanostructure particles was calculated from diffuse reflectance spectra. The photocatalytic effect of CuO nanostructure particles is confirmed by the UV – Vis and photoluminescence spectra and from the kinetic studies under UV and solar radiations. The photocatalytic degradation results revealed that 16.35 and 7.5% of black E and Congo red dye was degraded under UV, while the degradation was 47.2 and 17.6% under solar light. The influence of pH on the photodegradation and change in the reaction temperature under solar irradiation were also investigated.","PeriodicalId":14603,"journal":{"name":"Iranian Journal of Materials Science and Engineering","volume":" ","pages":"1-12"},"PeriodicalIF":1.1000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22068/IJMSE.2145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3
Abstract
Copper oxide (CuO) nanostructure particles were prepared using KOH/NaOH catalyst by low cost precipitation method and characterized by powder X-ray diffraction (PXRD), scanning electron microscope (SEM) and energy dispersive X-ray spectra (EDX) analysis. The photocatalytic dye degradation study of pure CuO nanostructure particles are analysed against two azo dyes (Direct black 38 (Black-E) and Congo red) under ultraviolet (UV) and solar irradiation. The release of major active species (*OH) in the photocatalytic degradation by as prepared CuO nanostructure particles were investigated by photoluminescence (PL) spectra with two different excitation wavelength (325 and 355nm). The band gap of CuO nanostructure particles was calculated from diffuse reflectance spectra. The photocatalytic effect of CuO nanostructure particles is confirmed by the UV – Vis and photoluminescence spectra and from the kinetic studies under UV and solar radiations. The photocatalytic degradation results revealed that 16.35 and 7.5% of black E and Congo red dye was degraded under UV, while the degradation was 47.2 and 17.6% under solar light. The influence of pH on the photodegradation and change in the reaction temperature under solar irradiation were also investigated.