{"title":"A new conjugate gradient method for acceleration of gradient descent algorithms","authors":"Noureddine Rahali, M. Belloufi, R. Benzine","doi":"10.2478/mjpaa-2021-0001","DOIUrl":null,"url":null,"abstract":"Abstract An accelerated of the steepest descent method for solving unconstrained optimization problems is presented. which propose a fundamentally different conjugate gradient method, in which the well-known parameter βk is computed by an new formula. Under common assumptions, by using a modified Wolfe line search, descent property and global convergence results were established for the new method. Experimental results provide evidence that our proposed method is in general superior to the classical steepest descent method and has a potential to significantly enhance the computational efficiency and robustness of the training process.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"7 1","pages":"1 - 11"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2021-0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract An accelerated of the steepest descent method for solving unconstrained optimization problems is presented. which propose a fundamentally different conjugate gradient method, in which the well-known parameter βk is computed by an new formula. Under common assumptions, by using a modified Wolfe line search, descent property and global convergence results were established for the new method. Experimental results provide evidence that our proposed method is in general superior to the classical steepest descent method and has a potential to significantly enhance the computational efficiency and robustness of the training process.