Homogeneous non-split superstrings of odd dimension 4

Q3 Mathematics
M. Bashkin
{"title":"Homogeneous non-split superstrings of odd dimension 4","authors":"M. Bashkin","doi":"10.46298/cm.9843","DOIUrl":null,"url":null,"abstract":"Let $\\mathbf L_k$ be the holomorphic line bundle of degree $k \\in \\mathbb Z$ on the projective line. Here, the tuples $(k_1 k_2 k_3 k_4)$ for which there does not exists homogeneous non-split supermanifolds $CP^{1|4}_{k_1 k_2 k_3 k_4}$ associated with the vector bundle $\\mathbf L_{−k_1} \\oplus \\mathbf L _{−k_2} \\oplus \\mathbf L_{−k_3} \\oplus \\mathbf L_{−k_4}$ are classified. \\\\For many types of the remaining tuples, there are listed cocycles that determine homogeneous non-split supermanifolds. \\\\Proofs follow the lines indicated in the paper Bunegina V.A., Onishchik A.L., Homogeneous supermanifolds associated with the complex projective line.neous supermanifolds associated with the complex projective line. J. Math. Sci. V. 82 (1996)3503­--3527.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.9843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

Let $\mathbf L_k$ be the holomorphic line bundle of degree $k \in \mathbb Z$ on the projective line. Here, the tuples $(k_1 k_2 k_3 k_4)$ for which there does not exists homogeneous non-split supermanifolds $CP^{1|4}_{k_1 k_2 k_3 k_4}$ associated with the vector bundle $\mathbf L_{−k_1} \oplus \mathbf L _{−k_2} \oplus \mathbf L_{−k_3} \oplus \mathbf L_{−k_4}$ are classified. \\For many types of the remaining tuples, there are listed cocycles that determine homogeneous non-split supermanifolds. \\Proofs follow the lines indicated in the paper Bunegina V.A., Onishchik A.L., Homogeneous supermanifolds associated with the complex projective line.neous supermanifolds associated with the complex projective line. J. Math. Sci. V. 82 (1996)3503­--3527.
奇维4的齐次非分裂超弦
设$\mathbf L_k$为投影线上次为$k \in \mathbb Z$的全纯线束。这里,对不存在与向量束$\mathbf L_{−k_1} \oplus \mathbf L _{−k_2} \oplus \mathbf L_{−k_3} \oplus \mathbf L_{−k_4}$相关的齐次非分裂超流形$CP^{1|4}_{k_1 k_2 k_3 k_4}$的元组$(k_1 k_2 k_3 k_4)$进行分类。 \\对于其余的元组的许多类型,存在确定齐次非分裂超流形的列出的环。 \\根据Bunegina V.A., Onishchik A.L.(与复射影线相关的齐次超流形)论文中的线进行证明。与复射影线相关的神经超流形。J.数学。科学。V. 82(1996)3503—3527。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信